Based on kernel version 6.11
. Page generated on 2024-09-24 08:21 EST
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 | Naming and data format standards for sysfs files ================================================ The libsensors library offers an interface to the raw sensors data through the sysfs interface. Since lm-sensors 3.0.0, libsensors is completely chip-independent. It assumes that all the kernel drivers implement the standard sysfs interface described in this document. This makes adding or updating support for any given chip very easy, as libsensors, and applications using it, do not need to be modified. This is a major improvement compared to lm-sensors 2. Note that motherboards vary widely in the connections to sensor chips. There is no standard that ensures, for example, that the second temperature sensor is connected to the CPU, or that the second fan is on the CPU. Also, some values reported by the chips need some computation before they make full sense. For example, most chips can only measure voltages between 0 and +4V. Other voltages are scaled back into that range using external resistors. Since the values of these resistors can change from motherboard to motherboard, the conversions cannot be hard coded into the driver and have to be done in user space. For this reason, even if we aim at a chip-independent libsensors, it will still require a configuration file (e.g. /etc/sensors.conf) for proper values conversion, labeling of inputs and hiding of unused inputs. An alternative method that some programs use is to access the sysfs files directly. This document briefly describes the standards that the drivers follow, so that an application program can scan for entries and access this data in a simple and consistent way. That said, such programs will have to implement conversion, labeling and hiding of inputs. For this reason, it is still not recommended to bypass the library. Each chip gets its own directory in the sysfs /sys/devices tree. To find all sensor chips, it is easier to follow the device symlinks from `/sys/class/hwmon/hwmon*`. Up to lm-sensors 3.0.0, libsensors looks for hardware monitoring attributes in the "physical" device directory. Since lm-sensors 3.0.1, attributes found in the hwmon "class" device directory are also supported. Complex drivers (e.g. drivers for multifunction chips) may want to use this possibility to avoid namespace pollution. The only drawback will be that older versions of libsensors won't support the driver in question. All sysfs values are fixed point numbers. There is only one value per file, unlike the older /proc specification. The common scheme for files naming is: <type><number>_<item>. Usual types for sensor chips are "in" (voltage), "temp" (temperature) and "fan" (fan). Usual items are "input" (measured value), "max" (high threshold, "min" (low threshold). Numbering usually starts from 1, except for voltages which start from 0 (because most data sheets use this). A number is always used for elements that can be present more than once, even if there is a single element of the given type on the specific chip. Other files do not refer to a specific element, so they have a simple name, and no number. Alarms are direct indications read from the chips. The drivers do NOT make comparisons of readings to thresholds. This allows violations between readings to be caught and alarmed. The exact definition of an alarm (for example, whether a threshold must be met or must be exceeded to cause an alarm) is chip-dependent. When setting values of hwmon sysfs attributes, the string representation of the desired value must be written, note that strings which are not a number are interpreted as 0! For more on how written strings are interpreted see the "sysfs attribute writes interpretation" section at the end of this file. Attribute access ---------------- Hardware monitoring sysfs attributes are displayed by unrestricted userspace applications. For this reason, all standard ABI attributes shall be world readable. Writeable standard ABI attributes shall be writeable only for privileged users. ------------------------------------------------------------------------- ======= =========================================== `[0-*]` denotes any positive number starting from 0 `[1-*]` denotes any positive number starting from 1 RO read only value WO write only value RW read/write value ======= =========================================== Read/write values may be read-only for some chips, depending on the hardware implementation. All entries (except name) are optional, and should only be created in a given driver if the chip has the feature. See Documentation/ABI/testing/sysfs-class-hwmon for a complete description of the attributes. ***************** Global attributes ***************** `name` The chip name. `label` A descriptive label that allows to uniquely identify a device within the system. `update_interval` The interval at which the chip will update readings. ******** Voltages ******** `in[0-*]_min` Voltage min value. `in[0-*]_lcrit` Voltage critical min value. `in[0-*]_max` Voltage max value. `in[0-*]_crit` Voltage critical max value. `in[0-*]_input` Voltage input value. `in[0-*]_average` Average voltage `in[0-*]_lowest` Historical minimum voltage `in[0-*]_highest` Historical maximum voltage `in[0-*]_reset_history` Reset inX_lowest and inX_highest `in_reset_history` Reset inX_lowest and inX_highest for all sensors `in[0-*]_label` Suggested voltage channel label. `in[0-*]_enable` Enable or disable the sensors. `cpu[0-*]_vid` CPU core reference voltage. `vrm` Voltage Regulator Module version number. `in[0-*]_rated_min` Minimum rated voltage. `in[0-*]_rated_max` Maximum rated voltage. Also see the Alarms section for status flags associated with voltages. **** Fans **** `fan[1-*]_min` Fan minimum value `fan[1-*]_max` Fan maximum value `fan[1-*]_input` Fan input value. `fan[1-*]_div` Fan divisor. `fan[1-*]_pulses` Number of tachometer pulses per fan revolution. `fan[1-*]_target` Desired fan speed `fan[1-*]_label` Suggested fan channel label. `fan[1-*]_enable` Enable or disable the sensors. Also see the Alarms section for status flags associated with fans. *** PWM *** `pwm[1-*]` Pulse width modulation fan control. `pwm[1-*]_enable` Fan speed control method. `pwm[1-*]_mode` direct current or pulse-width modulation. `pwm[1-*]_freq` Base PWM frequency in Hz. `pwm[1-*]_auto_channels_temp` Select which temperature channels affect this PWM output in auto mode. `pwm[1-*]_auto_point[1-*]_pwm` / `pwm[1-*]_auto_point[1-*]_temp` / `pwm[1-*]_auto_point[1-*]_temp_hyst` Define the PWM vs temperature curve. `temp[1-*]_auto_point[1-*]_pwm` / `temp[1-*]_auto_point[1-*]_temp` / `temp[1-*]_auto_point[1-*]_temp_hyst` Define the PWM vs temperature curve. There is a third case where trip points are associated to both PWM output channels and temperature channels: the PWM values are associated to PWM output channels while the temperature values are associated to temperature channels. In that case, the result is determined by the mapping between temperature inputs and PWM outputs. When several temperature inputs are mapped to a given PWM output, this leads to several candidate PWM values. The actual result is up to the chip, but in general the highest candidate value (fastest fan speed) wins. ************ Temperatures ************ `temp[1-*]_type` Sensor type selection. `temp[1-*]_max` Temperature max value. `temp[1-*]_min` Temperature min value. `temp[1-*]_max_hyst` Temperature hysteresis value for max limit. `temp[1-*]_min_hyst` Temperature hysteresis value for min limit. `temp[1-*]_input` Temperature input value. `temp[1-*]_crit` Temperature critical max value, typically greater than corresponding temp_max values. `temp[1-*]_crit_hyst` Temperature hysteresis value for critical limit. `temp[1-*]_emergency` Temperature emergency max value, for chips supporting more than two upper temperature limits. `temp[1-*]_emergency_hyst` Temperature hysteresis value for emergency limit. `temp[1-*]_lcrit` Temperature critical min value, typically lower than corresponding temp_min values. `temp[1-*]_lcrit_hyst` Temperature hysteresis value for critical min limit. `temp[1-*]_offset` Temperature offset which is added to the temperature reading by the chip. `temp[1-*]_label` Suggested temperature channel label. `temp[1-*]_lowest` Historical minimum temperature `temp[1-*]_highest` Historical maximum temperature `temp[1-*]_reset_history` Reset temp_lowest and temp_highest `temp_reset_history` Reset temp_lowest and temp_highest for all sensors `temp[1-*]_enable` Enable or disable the sensors. `temp[1-*]_rated_min` Minimum rated temperature. `temp[1-*]_rated_max` Maximum rated temperature. Some chips measure temperature using external thermistors and an ADC, and report the temperature measurement as a voltage. Converting this voltage back to a temperature (or the other way around for limits) requires mathematical functions not available in the kernel, so the conversion must occur in user space. For these chips, all temp* files described above should contain values expressed in millivolt instead of millidegree Celsius. In other words, such temperature channels are handled as voltage channels by the driver. Also see the Alarms section for status flags associated with temperatures. ******** Currents ******** `curr[1-*]_max` Current max value. `curr[1-*]_min` Current min value. `curr[1-*]_lcrit` Current critical low value `curr[1-*]_crit` Current critical high value. `curr[1-*]_input` Current input value. `curr[1-*]_average` Average current use. `curr[1-*]_lowest` Historical minimum current. `curr[1-*]_highest` Historical maximum current. `curr[1-*]_reset_history` Reset currX_lowest and currX_highest WO `curr_reset_history` Reset currX_lowest and currX_highest for all sensors. `curr[1-*]_enable` Enable or disable the sensors. `curr[1-*]_rated_min` Minimum rated current. `curr[1-*]_rated_max` Maximum rated current. Also see the Alarms section for status flags associated with currents. ***** Power ***** `power[1-*]_average` Average power use. `power[1-*]_average_interval` Power use averaging interval. `power[1-*]_average_interval_max` Maximum power use averaging interval. `power[1-*]_average_interval_min` Minimum power use averaging interval. `power[1-*]_average_highest` Historical average maximum power use `power[1-*]_average_lowest` Historical average minimum power use `power[1-*]_average_max` A poll notification is sent to `power[1-*]_average` when power use rises above this value. `power[1-*]_average_min` A poll notification is sent to `power[1-*]_average` when power use sinks below this value. `power[1-*]_input` Instantaneous power use. `power[1-*]_input_highest` Historical maximum power use `power[1-*]_input_lowest` Historical minimum power use. `power[1-*]_reset_history` Reset input_highest, input_lowest, average_highest and average_lowest. `power[1-*]_accuracy` Accuracy of the power meter. `power[1-*]_cap` If power use rises above this limit, the system should take action to reduce power use. `power[1-*]_cap_hyst` Margin of hysteresis built around capping and notification. `power[1-*]_cap_max` Maximum cap that can be set. `power[1-*]_cap_min` Minimum cap that can be set. `power[1-*]_max` Maximum power. `power[1-*]_crit` Critical maximum power. If power rises to or above this limit, the system is expected take drastic action to reduce power consumption, such as a system shutdown or a forced powerdown of some devices. Unit: microWatt RW `power[1-*]_enable` Enable or disable the sensors. When disabled the sensor read will return -ENODATA. - 1: Enable - 0: Disable RW `power[1-*]_rated_min` Minimum rated power. Unit: microWatt RO `power[1-*]_rated_max` Maximum rated power. Unit: microWatt RO Also see the Alarms section for status flags associated with power readings. ****** Energy ****** `energy[1-*]_input` Cumulative energy use Unit: microJoule RO `energy[1-*]_enable` Enable or disable the sensors. When disabled the sensor read will return -ENODATA. - 1: Enable - 0: Disable RW ******** Humidity ******** `humidity[1-*]_input` Humidity. `humidity[1-*]_enable` Enable or disable the sensors. `humidity[1-*]_rated_min` Minimum rated humidity. `humidity[1-*]_rated_max` Maximum rated humidity. ****** Alarms ****** Each channel or limit may have an associated alarm file, containing a boolean value. 1 means than an alarm condition exists, 0 means no alarm. Usually a given chip will either use channel-related alarms, or limit-related alarms, not both. The driver should just reflect the hardware implementation. +-------------------------------+-----------------------+ | **`in[0-*]_alarm`, | Channel alarm | | `curr[1-*]_alarm`, | | | `power[1-*]_alarm`, | - 0: no alarm | | `fan[1-*]_alarm`, | - 1: alarm | | `temp[1-*]_alarm`** | | | | RO | +-------------------------------+-----------------------+ **OR** +-------------------------------+-----------------------+ | **`in[0-*]_min_alarm`, | Limit alarm | | `in[0-*]_max_alarm`, | | | `in[0-*]_lcrit_alarm`, | - 0: no alarm | | `in[0-*]_crit_alarm`, | - 1: alarm | | `curr[1-*]_min_alarm`, | | | `curr[1-*]_max_alarm`, | RO | | `curr[1-*]_lcrit_alarm`, | | | `curr[1-*]_crit_alarm`, | | | `power[1-*]_cap_alarm`, | | | `power[1-*]_max_alarm`, | | | `power[1-*]_crit_alarm`, | | | `fan[1-*]_min_alarm`, | | | `fan[1-*]_max_alarm`, | | | `temp[1-*]_min_alarm`, | | | `temp[1-*]_max_alarm`, | | | `temp[1-*]_lcrit_alarm`, | | | `temp[1-*]_crit_alarm`, | | | `temp[1-*]_emergency_alarm`** | | +-------------------------------+-----------------------+ Each input channel may have an associated fault file. This can be used to notify open diodes, unconnected fans etc. where the hardware supports it. When this boolean has value 1, the measurement for that channel should not be trusted. `fan[1-*]_fault` / `temp[1-*]_fault` Input fault condition. Some chips also offer the possibility to get beeped when an alarm occurs: `beep_enable` Master beep enable. `in[0-*]_beep`, `curr[1-*]_beep`, `fan[1-*]_beep`, `temp[1-*]_beep`, Channel beep. In theory, a chip could provide per-limit beep masking, but no such chip was seen so far. Old drivers provided a different, non-standard interface to alarms and beeps. These interface files are deprecated, but will be kept around for compatibility reasons: `alarms` Alarm bitmask. `beep_mask` Bitmask for beep. ******************* Intrusion detection ******************* `intrusion[0-*]_alarm` Chassis intrusion detection. `intrusion[0-*]_beep` Chassis intrusion beep. **************************** Average sample configuration **************************** Devices allowing for reading {in,power,curr,temp}_average values may export attributes for controlling number of samples used to compute average. +--------------+---------------------------------------------------------------+ | samples | Sets number of average samples for all types of measurements. | | | | | | RW | +--------------+---------------------------------------------------------------+ | in_samples | Sets number of average samples for specific type of | | power_samples| measurements. | | curr_samples | | | temp_samples | Note that on some devices it won't be possible to set all of | | | them to different values so changing one might also change | | | some others. | | | | | | RW | +--------------+---------------------------------------------------------------+ sysfs attribute writes interpretation ------------------------------------- hwmon sysfs attributes always contain numbers, so the first thing to do is to convert the input to a number, there are 2 ways todo this depending whether the number can be negative or not:: unsigned long u = simple_strtoul(buf, NULL, 10); long s = simple_strtol(buf, NULL, 10); With buf being the buffer with the user input being passed by the kernel. Notice that we do not use the second argument of strto[u]l, and thus cannot tell when 0 is returned, if this was really 0 or is caused by invalid input. This is done deliberately as checking this everywhere would add a lot of code to the kernel. Notice that it is important to always store the converted value in an unsigned long or long, so that no wrap around can happen before any further checking. After the input string is converted to an (unsigned) long, the value should be checked if its acceptable. Be careful with further conversions on the value before checking it for validity, as these conversions could still cause a wrap around before the check. For example do not multiply the result, and only add/subtract if it has been divided before the add/subtract. What to do if a value is found to be invalid, depends on the type of the sysfs attribute that is being set. If it is a continuous setting like a tempX_max or inX_max attribute, then the value should be clamped to its limits using clamp_val(value, min_limit, max_limit). If it is not continuous like for example a tempX_type, then when an invalid value is written, -EINVAL should be returned. Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees):: long v = simple_strtol(buf, NULL, 10) / 1000; v = clamp_val(v, -128, 127); /* write v to register */ Example2, fan divider setting, valid values 2, 4 and 8:: unsigned long v = simple_strtoul(buf, NULL, 10); switch (v) { case 2: v = 1; break; case 4: v = 2; break; case 8: v = 3; break; default: return -EINVAL; } /* write v to register */ |