Documentation / networking / vrf.rst


Based on kernel version 5.13. Page generated on 2021-06-28 07:05 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
.. SPDX-License-Identifier: GPL-2.0

====================================
Virtual Routing and Forwarding (VRF)
====================================

The VRF Device
==============

The VRF device combined with ip rules provides the ability to create virtual
routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
Linux network stack. One use case is the multi-tenancy problem where each
tenant has their own unique routing tables and in the very least need
different default gateways.

Processes can be "VRF aware" by binding a socket to the VRF device. Packets
through the socket then use the routing table associated with the VRF
device. An important feature of the VRF device implementation is that it
impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
(ie., they do not need to be run in each VRF). The design also allows
the use of higher priority ip rules (Policy Based Routing, PBR) to take
precedence over the VRF device rules directing specific traffic as desired.

In addition, VRF devices allow VRFs to be nested within namespaces. For
example network namespaces provide separation of network interfaces at the
device layer, VLANs on the interfaces within a namespace provide L2 separation
and then VRF devices provide L3 separation.

Design
------
A VRF device is created with an associated route table. Network interfaces
are then enslaved to a VRF device::

	 +-----------------------------+
	 |           vrf-blue          |  ===> route table 10
	 +-----------------------------+
	    |        |            |
	 +------+ +------+     +-------------+
	 | eth1 | | eth2 | ... |    bond1    |
	 +------+ +------+     +-------------+
				  |       |
			      +------+ +------+
			      | eth8 | | eth9 |
			      +------+ +------+

Packets received on an enslaved device and are switched to the VRF device
in the IPv4 and IPv6 processing stacks giving the impression that packets
flow through the VRF device. Similarly on egress routing rules are used to
send packets to the VRF device driver before getting sent out the actual
interface. This allows tcpdump on a VRF device to capture all packets into
and out of the VRF as a whole\ [1]_. Similarly, netfilter\ [2]_ and tc rules
can be applied using the VRF device to specify rules that apply to the VRF
domain as a whole.

.. [1] Packets in the forwarded state do not flow through the device, so those
       packets are not seen by tcpdump. Will revisit this limitation in a
       future release.

.. [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
       ingress device and both INPUT and PREROUTING rules with skb->dev set to
       the VRF device. For egress POSTROUTING and OUTPUT rules can be written
       using either the VRF device or real egress device.

Setup
-----
1. VRF device is created with an association to a FIB table.
   e.g,::

	ip link add vrf-blue type vrf table 10
	ip link set dev vrf-blue up

2. An l3mdev FIB rule directs lookups to the table associated with the device.
   A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
   l3mdev rule for IPv4 and IPv6 when the first device is created with a
   default preference of 1000. Users may delete the rule if desired and add
   with a different priority or install per-VRF rules.

   Prior to the v4.8 kernel iif and oif rules are needed for each VRF device::

       ip ru add oif vrf-blue table 10
       ip ru add iif vrf-blue table 10

3. Set the default route for the table (and hence default route for the VRF)::

       ip route add table 10 unreachable default metric 4278198272

   This high metric value ensures that the default unreachable route can
   be overridden by a routing protocol suite.  FRRouting interprets
   kernel metrics as a combined admin distance (upper byte) and priority
   (lower 3 bytes).  Thus the above metric translates to [255/8192].

4. Enslave L3 interfaces to a VRF device::

       ip link set dev eth1 master vrf-blue

   Local and connected routes for enslaved devices are automatically moved to
   the table associated with VRF device. Any additional routes depending on
   the enslaved device are dropped and will need to be reinserted to the VRF
   FIB table following the enslavement.

   The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
   addresses as VRF enslavement changes::

       sysctl -w net.ipv6.conf.all.keep_addr_on_down=1

5. Additional VRF routes are added to associated table::

       ip route add table 10 ...


Applications
------------
Applications that are to work within a VRF need to bind their socket to the
VRF device::

    setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);

or to specify the output device using cmsg and IP_PKTINFO.

By default the scope of the port bindings for unbound sockets is
limited to the default VRF. That is, it will not be matched by packets
arriving on interfaces enslaved to an l3mdev and processes may bind to
the same port if they bind to an l3mdev.

TCP & UDP services running in the default VRF context (ie., not bound
to any VRF device) can work across all VRF domains by enabling the
tcp_l3mdev_accept and udp_l3mdev_accept sysctl options::

    sysctl -w net.ipv4.tcp_l3mdev_accept=1
    sysctl -w net.ipv4.udp_l3mdev_accept=1

These options are disabled by default so that a socket in a VRF is only
selected for packets in that VRF. There is a similar option for RAW
sockets, which is enabled by default for reasons of backwards compatibility.
This is so as to specify the output device with cmsg and IP_PKTINFO, but
using a socket not bound to the corresponding VRF. This allows e.g. older ping
implementations to be run with specifying the device but without executing it
in the VRF. This option can be disabled so that packets received in a VRF
context are only handled by a raw socket bound to the VRF, and packets in the
default VRF are only handled by a socket not bound to any VRF::

    sysctl -w net.ipv4.raw_l3mdev_accept=0

netfilter rules on the VRF device can be used to limit access to services
running in the default VRF context as well.

--------------------------------------------------------------------------------

Using iproute2 for VRFs
=======================
iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
section lists both commands where appropriate -- with the vrf keyword and the
older form without it.

1. Create a VRF

   To instantiate a VRF device and associate it with a table::

       $ ip link add dev NAME type vrf table ID

   As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
   covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
   device create.

2. List VRFs

   To list VRFs that have been created::

       $ ip [-d] link show type vrf
	 NOTE: The -d option is needed to show the table id

   For example::

       $ ip -d link show type vrf
       11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
	   link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
	   vrf table 1 addrgenmode eui64
       12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
	   link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
	   vrf table 10 addrgenmode eui64
       13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
	   link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
	   vrf table 66 addrgenmode eui64
       14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
	   link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
	   vrf table 81 addrgenmode eui64


   Or in brief output::

       $ ip -br link show type vrf
       mgmt         UP             72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
       red          UP             b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
       blue         UP             36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
       green        UP             e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>


3. Assign a Network Interface to a VRF

   Network interfaces are assigned to a VRF by enslaving the netdevice to a
   VRF device::

       $ ip link set dev NAME master NAME

   On enslavement connected and local routes are automatically moved to the
   table associated with the VRF device.

   For example::

       $ ip link set dev eth0 master mgmt


4. Show Devices Assigned to a VRF

   To show devices that have been assigned to a specific VRF add the master
   option to the ip command::

       $ ip link show vrf NAME
       $ ip link show master NAME

   For example::

       $ ip link show vrf red
       3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
	   link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
       4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
	   link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
       7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
	   link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff


   Or using the brief output::

       $ ip -br link show vrf red
       eth1             UP             02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
       eth2             UP             02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
       eth5             DOWN           02:00:00:00:02:06 <BROADCAST,MULTICAST>


5. Show Neighbor Entries for a VRF

   To list neighbor entries associated with devices enslaved to a VRF device
   add the master option to the ip command::

       $ ip [-6] neigh show vrf NAME
       $ ip [-6] neigh show master NAME

   For example::

       $  ip neigh show vrf red
       10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
       10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE

       $ ip -6 neigh show vrf red
       2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE


6. Show Addresses for a VRF

   To show addresses for interfaces associated with a VRF add the master
   option to the ip command::

       $ ip addr show vrf NAME
       $ ip addr show master NAME

   For example::

	$ ip addr show vrf red
	3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
	    link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
	    inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
	       valid_lft forever preferred_lft forever
	    inet6 2002:1::2/120 scope global
	       valid_lft forever preferred_lft forever
	    inet6 fe80::ff:fe00:202/64 scope link
	       valid_lft forever preferred_lft forever
	4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
	    link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
	    inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
	       valid_lft forever preferred_lft forever
	    inet6 2002:2::2/120 scope global
	       valid_lft forever preferred_lft forever
	    inet6 fe80::ff:fe00:203/64 scope link
	       valid_lft forever preferred_lft forever
	7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
	    link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff

   Or in brief format::

	$ ip -br addr show vrf red
	eth1             UP             10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
	eth2             UP             10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
	eth5             DOWN


7. Show Routes for a VRF

   To show routes for a VRF use the ip command to display the table associated
   with the VRF device::

       $ ip [-6] route show vrf NAME
       $ ip [-6] route show table ID

   For example::

	$ ip route show vrf red
	unreachable default  metric 4278198272
	broadcast 10.2.1.0 dev eth1  proto kernel  scope link  src 10.2.1.2
	10.2.1.0/24 dev eth1  proto kernel  scope link  src 10.2.1.2
	local 10.2.1.2 dev eth1  proto kernel  scope host  src 10.2.1.2
	broadcast 10.2.1.255 dev eth1  proto kernel  scope link  src 10.2.1.2
	broadcast 10.2.2.0 dev eth2  proto kernel  scope link  src 10.2.2.2
	10.2.2.0/24 dev eth2  proto kernel  scope link  src 10.2.2.2
	local 10.2.2.2 dev eth2  proto kernel  scope host  src 10.2.2.2
	broadcast 10.2.2.255 dev eth2  proto kernel  scope link  src 10.2.2.2

	$ ip -6 route show vrf red
	local 2002:1:: dev lo  proto none  metric 0  pref medium
	local 2002:1::2 dev lo  proto none  metric 0  pref medium
	2002:1::/120 dev eth1  proto kernel  metric 256  pref medium
	local 2002:2:: dev lo  proto none  metric 0  pref medium
	local 2002:2::2 dev lo  proto none  metric 0  pref medium
	2002:2::/120 dev eth2  proto kernel  metric 256  pref medium
	local fe80:: dev lo  proto none  metric 0  pref medium
	local fe80:: dev lo  proto none  metric 0  pref medium
	local fe80::ff:fe00:202 dev lo  proto none  metric 0  pref medium
	local fe80::ff:fe00:203 dev lo  proto none  metric 0  pref medium
	fe80::/64 dev eth1  proto kernel  metric 256  pref medium
	fe80::/64 dev eth2  proto kernel  metric 256  pref medium
	ff00::/8 dev red  metric 256  pref medium
	ff00::/8 dev eth1  metric 256  pref medium
	ff00::/8 dev eth2  metric 256  pref medium
	unreachable default dev lo  metric 4278198272  error -101 pref medium

8. Route Lookup for a VRF

   A test route lookup can be done for a VRF::

       $ ip [-6] route get vrf NAME ADDRESS
       $ ip [-6] route get oif NAME ADDRESS

   For example::

	$ ip route get 10.2.1.40 vrf red
	10.2.1.40 dev eth1  table red  src 10.2.1.2
	    cache

	$ ip -6 route get 2002:1::32 vrf red
	2002:1::32 from :: dev eth1  table red  proto kernel  src 2002:1::2  metric 256  pref medium


9. Removing Network Interface from a VRF

   Network interfaces are removed from a VRF by breaking the enslavement to
   the VRF device::

       $ ip link set dev NAME nomaster

   Connected routes are moved back to the default table and local entries are
   moved to the local table.

   For example::

    $ ip link set dev eth0 nomaster

--------------------------------------------------------------------------------

Commands used in this example::

     cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
     1  mgmt
     10 red
     66 blue
     81 green
     EOF

     function vrf_create
     {
	 VRF=$1
	 TBID=$2

	 # create VRF device
	 ip link add ${VRF} type vrf table ${TBID}

	 if [ "${VRF}" != "mgmt" ]; then
	     ip route add table ${TBID} unreachable default metric 4278198272
	 fi
	 ip link set dev ${VRF} up
     }

     vrf_create mgmt 1
     ip link set dev eth0 master mgmt

     vrf_create red 10
     ip link set dev eth1 master red
     ip link set dev eth2 master red
     ip link set dev eth5 master red

     vrf_create blue 66
     ip link set dev eth3 master blue

     vrf_create green 81
     ip link set dev eth4 master green


     Interface addresses from /etc/network/interfaces:
     auto eth0
     iface eth0 inet static
	   address 10.0.0.2
	   netmask 255.255.255.0
	   gateway 10.0.0.254

     iface eth0 inet6 static
	   address 2000:1::2
	   netmask 120

     auto eth1
     iface eth1 inet static
	   address 10.2.1.2
	   netmask 255.255.255.0

     iface eth1 inet6 static
	   address 2002:1::2
	   netmask 120

     auto eth2
     iface eth2 inet static
	   address 10.2.2.2
	   netmask 255.255.255.0

     iface eth2 inet6 static
	   address 2002:2::2
	   netmask 120

     auto eth3
     iface eth3 inet static
	   address 10.2.3.2
	   netmask 255.255.255.0

     iface eth3 inet6 static
	   address 2002:3::2
	   netmask 120

     auto eth4
     iface eth4 inet static
	   address 10.2.4.2
	   netmask 255.255.255.0

     iface eth4 inet6 static
	   address 2002:4::2
	   netmask 120