Based on kernel version 6.11
. Page generated on 2024-09-24 08:21 EST
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 | .. SPDX-License-Identifier: GPL-2.0 .. include:: <isonum.txt> =========================================== User Interface for Resource Control feature =========================================== :Copyright: |copy| 2016 Intel Corporation :Authors: - Fenghua Yu <fenghua.yu@intel.com> - Tony Luck <tony.luck@intel.com> - Vikas Shivappa <vikas.shivappa@intel.com> Intel refers to this feature as Intel Resource Director Technology(Intel(R) RDT). AMD refers to this feature as AMD Platform Quality of Service(AMD QoS). This feature is enabled by the CONFIG_X86_CPU_RESCTRL and the x86 /proc/cpuinfo flag bits: =============================================== ================================ RDT (Resource Director Technology) Allocation "rdt_a" CAT (Cache Allocation Technology) "cat_l3", "cat_l2" CDP (Code and Data Prioritization) "cdp_l3", "cdp_l2" CQM (Cache QoS Monitoring) "cqm_llc", "cqm_occup_llc" MBM (Memory Bandwidth Monitoring) "cqm_mbm_total", "cqm_mbm_local" MBA (Memory Bandwidth Allocation) "mba" SMBA (Slow Memory Bandwidth Allocation) "" BMEC (Bandwidth Monitoring Event Configuration) "" =============================================== ================================ Historically, new features were made visible by default in /proc/cpuinfo. This resulted in the feature flags becoming hard to parse by humans. Adding a new flag to /proc/cpuinfo should be avoided if user space can obtain information about the feature from resctrl's info directory. To use the feature mount the file system:: # mount -t resctrl resctrl [-o cdp[,cdpl2][,mba_MBps][,debug]] /sys/fs/resctrl mount options are: "cdp": Enable code/data prioritization in L3 cache allocations. "cdpl2": Enable code/data prioritization in L2 cache allocations. "mba_MBps": Enable the MBA Software Controller(mba_sc) to specify MBA bandwidth in MiBps "debug": Make debug files accessible. Available debug files are annotated with "Available only with debug option". L2 and L3 CDP are controlled separately. RDT features are orthogonal. A particular system may support only monitoring, only control, or both monitoring and control. Cache pseudo-locking is a unique way of using cache control to "pin" or "lock" data in the cache. Details can be found in "Cache Pseudo-Locking". The mount succeeds if either of allocation or monitoring is present, but only those files and directories supported by the system will be created. For more details on the behavior of the interface during monitoring and allocation, see the "Resource alloc and monitor groups" section. Info directory ============== The 'info' directory contains information about the enabled resources. Each resource has its own subdirectory. The subdirectory names reflect the resource names. Each subdirectory contains the following files with respect to allocation: Cache resource(L3/L2) subdirectory contains the following files related to allocation: "num_closids": The number of CLOSIDs which are valid for this resource. The kernel uses the smallest number of CLOSIDs of all enabled resources as limit. "cbm_mask": The bitmask which is valid for this resource. This mask is equivalent to 100%. "min_cbm_bits": The minimum number of consecutive bits which must be set when writing a mask. "shareable_bits": Bitmask of shareable resource with other executing entities (e.g. I/O). User can use this when setting up exclusive cache partitions. Note that some platforms support devices that have their own settings for cache use which can over-ride these bits. "bit_usage": Annotated capacity bitmasks showing how all instances of the resource are used. The legend is: "0": Corresponding region is unused. When the system's resources have been allocated and a "0" is found in "bit_usage" it is a sign that resources are wasted. "H": Corresponding region is used by hardware only but available for software use. If a resource has bits set in "shareable_bits" but not all of these bits appear in the resource groups' schematas then the bits appearing in "shareable_bits" but no resource group will be marked as "H". "X": Corresponding region is available for sharing and used by hardware and software. These are the bits that appear in "shareable_bits" as well as a resource group's allocation. "S": Corresponding region is used by software and available for sharing. "E": Corresponding region is used exclusively by one resource group. No sharing allowed. "P": Corresponding region is pseudo-locked. No sharing allowed. "sparse_masks": Indicates if non-contiguous 1s value in CBM is supported. "0": Only contiguous 1s value in CBM is supported. "1": Non-contiguous 1s value in CBM is supported. Memory bandwidth(MB) subdirectory contains the following files with respect to allocation: "min_bandwidth": The minimum memory bandwidth percentage which user can request. "bandwidth_gran": The granularity in which the memory bandwidth percentage is allocated. The allocated b/w percentage is rounded off to the next control step available on the hardware. The available bandwidth control steps are: min_bandwidth + N * bandwidth_gran. "delay_linear": Indicates if the delay scale is linear or non-linear. This field is purely informational only. "thread_throttle_mode": Indicator on Intel systems of how tasks running on threads of a physical core are throttled in cases where they request different memory bandwidth percentages: "max": the smallest percentage is applied to all threads "per-thread": bandwidth percentages are directly applied to the threads running on the core If RDT monitoring is available there will be an "L3_MON" directory with the following files: "num_rmids": The number of RMIDs available. This is the upper bound for how many "CTRL_MON" + "MON" groups can be created. "mon_features": Lists the monitoring events if monitoring is enabled for the resource. Example:: # cat /sys/fs/resctrl/info/L3_MON/mon_features llc_occupancy mbm_total_bytes mbm_local_bytes If the system supports Bandwidth Monitoring Event Configuration (BMEC), then the bandwidth events will be configurable. The output will be:: # cat /sys/fs/resctrl/info/L3_MON/mon_features llc_occupancy mbm_total_bytes mbm_total_bytes_config mbm_local_bytes mbm_local_bytes_config "mbm_total_bytes_config", "mbm_local_bytes_config": Read/write files containing the configuration for the mbm_total_bytes and mbm_local_bytes events, respectively, when the Bandwidth Monitoring Event Configuration (BMEC) feature is supported. The event configuration settings are domain specific and affect all the CPUs in the domain. When either event configuration is changed, the bandwidth counters for all RMIDs of both events (mbm_total_bytes as well as mbm_local_bytes) are cleared for that domain. The next read for every RMID will report "Unavailable" and subsequent reads will report the valid value. Following are the types of events supported: ==== ======================================================== Bits Description ==== ======================================================== 6 Dirty Victims from the QOS domain to all types of memory 5 Reads to slow memory in the non-local NUMA domain 4 Reads to slow memory in the local NUMA domain 3 Non-temporal writes to non-local NUMA domain 2 Non-temporal writes to local NUMA domain 1 Reads to memory in the non-local NUMA domain 0 Reads to memory in the local NUMA domain ==== ======================================================== By default, the mbm_total_bytes configuration is set to 0x7f to count all the event types and the mbm_local_bytes configuration is set to 0x15 to count all the local memory events. Examples: * To view the current configuration:: :: # cat /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config 0=0x7f;1=0x7f;2=0x7f;3=0x7f # cat /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config 0=0x15;1=0x15;3=0x15;4=0x15 * To change the mbm_total_bytes to count only reads on domain 0, the bits 0, 1, 4 and 5 needs to be set, which is 110011b in binary (in hexadecimal 0x33): :: # echo "0=0x33" > /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config # cat /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config 0=0x33;1=0x7f;2=0x7f;3=0x7f * To change the mbm_local_bytes to count all the slow memory reads on domain 0 and 1, the bits 4 and 5 needs to be set, which is 110000b in binary (in hexadecimal 0x30): :: # echo "0=0x30;1=0x30" > /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config # cat /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config 0=0x30;1=0x30;3=0x15;4=0x15 "max_threshold_occupancy": Read/write file provides the largest value (in bytes) at which a previously used LLC_occupancy counter can be considered for re-use. Finally, in the top level of the "info" directory there is a file named "last_cmd_status". This is reset with every "command" issued via the file system (making new directories or writing to any of the control files). If the command was successful, it will read as "ok". If the command failed, it will provide more information that can be conveyed in the error returns from file operations. E.g. :: # echo L3:0=f7 > schemata bash: echo: write error: Invalid argument # cat info/last_cmd_status mask f7 has non-consecutive 1-bits Resource alloc and monitor groups ================================= Resource groups are represented as directories in the resctrl file system. The default group is the root directory which, immediately after mounting, owns all the tasks and cpus in the system and can make full use of all resources. On a system with RDT control features additional directories can be created in the root directory that specify different amounts of each resource (see "schemata" below). The root and these additional top level directories are referred to as "CTRL_MON" groups below. On a system with RDT monitoring the root directory and other top level directories contain a directory named "mon_groups" in which additional directories can be created to monitor subsets of tasks in the CTRL_MON group that is their ancestor. These are called "MON" groups in the rest of this document. Removing a directory will move all tasks and cpus owned by the group it represents to the parent. Removing one of the created CTRL_MON groups will automatically remove all MON groups below it. Moving MON group directories to a new parent CTRL_MON group is supported for the purpose of changing the resource allocations of a MON group without impacting its monitoring data or assigned tasks. This operation is not allowed for MON groups which monitor CPUs. No other move operation is currently allowed other than simply renaming a CTRL_MON or MON group. All groups contain the following files: "tasks": Reading this file shows the list of all tasks that belong to this group. Writing a task id to the file will add a task to the group. Multiple tasks can be added by separating the task ids with commas. Tasks will be assigned sequentially. Multiple failures are not supported. A single failure encountered while attempting to assign a task will cause the operation to abort and already added tasks before the failure will remain in the group. Failures will be logged to /sys/fs/resctrl/info/last_cmd_status. If the group is a CTRL_MON group the task is removed from whichever previous CTRL_MON group owned the task and also from any MON group that owned the task. If the group is a MON group, then the task must already belong to the CTRL_MON parent of this group. The task is removed from any previous MON group. "cpus": Reading this file shows a bitmask of the logical CPUs owned by this group. Writing a mask to this file will add and remove CPUs to/from this group. As with the tasks file a hierarchy is maintained where MON groups may only include CPUs owned by the parent CTRL_MON group. When the resource group is in pseudo-locked mode this file will only be readable, reflecting the CPUs associated with the pseudo-locked region. "cpus_list": Just like "cpus", only using ranges of CPUs instead of bitmasks. When control is enabled all CTRL_MON groups will also contain: "schemata": A list of all the resources available to this group. Each resource has its own line and format - see below for details. "size": Mirrors the display of the "schemata" file to display the size in bytes of each allocation instead of the bits representing the allocation. "mode": The "mode" of the resource group dictates the sharing of its allocations. A "shareable" resource group allows sharing of its allocations while an "exclusive" resource group does not. A cache pseudo-locked region is created by first writing "pseudo-locksetup" to the "mode" file before writing the cache pseudo-locked region's schemata to the resource group's "schemata" file. On successful pseudo-locked region creation the mode will automatically change to "pseudo-locked". "ctrl_hw_id": Available only with debug option. The identifier used by hardware for the control group. On x86 this is the CLOSID. When monitoring is enabled all MON groups will also contain: "mon_data": This contains a set of files organized by L3 domain and by RDT event. E.g. on a system with two L3 domains there will be subdirectories "mon_L3_00" and "mon_L3_01". Each of these directories have one file per event (e.g. "llc_occupancy", "mbm_total_bytes", and "mbm_local_bytes"). In a MON group these files provide a read out of the current value of the event for all tasks in the group. In CTRL_MON groups these files provide the sum for all tasks in the CTRL_MON group and all tasks in MON groups. Please see example section for more details on usage. On systems with Sub-NUMA Cluster (SNC) enabled there are extra directories for each node (located within the "mon_L3_XX" directory for the L3 cache they occupy). These are named "mon_sub_L3_YY" where "YY" is the node number. "mon_hw_id": Available only with debug option. The identifier used by hardware for the monitor group. On x86 this is the RMID. Resource allocation rules ------------------------- When a task is running the following rules define which resources are available to it: 1) If the task is a member of a non-default group, then the schemata for that group is used. 2) Else if the task belongs to the default group, but is running on a CPU that is assigned to some specific group, then the schemata for the CPU's group is used. 3) Otherwise the schemata for the default group is used. Resource monitoring rules ------------------------- 1) If a task is a member of a MON group, or non-default CTRL_MON group then RDT events for the task will be reported in that group. 2) If a task is a member of the default CTRL_MON group, but is running on a CPU that is assigned to some specific group, then the RDT events for the task will be reported in that group. 3) Otherwise RDT events for the task will be reported in the root level "mon_data" group. Notes on cache occupancy monitoring and control =============================================== When moving a task from one group to another you should remember that this only affects *new* cache allocations by the task. E.g. you may have a task in a monitor group showing 3 MB of cache occupancy. If you move to a new group and immediately check the occupancy of the old and new groups you will likely see that the old group is still showing 3 MB and the new group zero. When the task accesses locations still in cache from before the move, the h/w does not update any counters. On a busy system you will likely see the occupancy in the old group go down as cache lines are evicted and re-used while the occupancy in the new group rises as the task accesses memory and loads into the cache are counted based on membership in the new group. The same applies to cache allocation control. Moving a task to a group with a smaller cache partition will not evict any cache lines. The process may continue to use them from the old partition. Hardware uses CLOSid(Class of service ID) and an RMID(Resource monitoring ID) to identify a control group and a monitoring group respectively. Each of the resource groups are mapped to these IDs based on the kind of group. The number of CLOSid and RMID are limited by the hardware and hence the creation of a "CTRL_MON" directory may fail if we run out of either CLOSID or RMID and creation of "MON" group may fail if we run out of RMIDs. max_threshold_occupancy - generic concepts ------------------------------------------ Note that an RMID once freed may not be immediately available for use as the RMID is still tagged the cache lines of the previous user of RMID. Hence such RMIDs are placed on limbo list and checked back if the cache occupancy has gone down. If there is a time when system has a lot of limbo RMIDs but which are not ready to be used, user may see an -EBUSY during mkdir. max_threshold_occupancy is a user configurable value to determine the occupancy at which an RMID can be freed. The mon_llc_occupancy_limbo tracepoint gives the precise occupancy in bytes for a subset of RMID that are not immediately available for allocation. This can't be relied on to produce output every second, it may be necessary to attempt to create an empty monitor group to force an update. Output may only be produced if creation of a control or monitor group fails. Schemata files - general concepts --------------------------------- Each line in the file describes one resource. The line starts with the name of the resource, followed by specific values to be applied in each of the instances of that resource on the system. Cache IDs --------- On current generation systems there is one L3 cache per socket and L2 caches are generally just shared by the hyperthreads on a core, but this isn't an architectural requirement. We could have multiple separate L3 caches on a socket, multiple cores could share an L2 cache. So instead of using "socket" or "core" to define the set of logical cpus sharing a resource we use a "Cache ID". At a given cache level this will be a unique number across the whole system (but it isn't guaranteed to be a contiguous sequence, there may be gaps). To find the ID for each logical CPU look in /sys/devices/system/cpu/cpu*/cache/index*/id Cache Bit Masks (CBM) --------------------- For cache resources we describe the portion of the cache that is available for allocation using a bitmask. The maximum value of the mask is defined by each cpu model (and may be different for different cache levels). It is found using CPUID, but is also provided in the "info" directory of the resctrl file system in "info/{resource}/cbm_mask". Some Intel hardware requires that these masks have all the '1' bits in a contiguous block. So 0x3, 0x6 and 0xC are legal 4-bit masks with two bits set, but 0x5, 0x9 and 0xA are not. Check /sys/fs/resctrl/info/{resource}/sparse_masks if non-contiguous 1s value is supported. On a system with a 20-bit mask each bit represents 5% of the capacity of the cache. You could partition the cache into four equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000. Notes on Sub-NUMA Cluster mode ============================== When SNC mode is enabled, Linux may load balance tasks between Sub-NUMA nodes much more readily than between regular NUMA nodes since the CPUs on Sub-NUMA nodes share the same L3 cache and the system may report the NUMA distance between Sub-NUMA nodes with a lower value than used for regular NUMA nodes. The top-level monitoring files in each "mon_L3_XX" directory provide the sum of data across all SNC nodes sharing an L3 cache instance. Users who bind tasks to the CPUs of a specific Sub-NUMA node can read the "llc_occupancy", "mbm_total_bytes", and "mbm_local_bytes" in the "mon_sub_L3_YY" directories to get node local data. Memory bandwidth allocation is still performed at the L3 cache level. I.e. throttling controls are applied to all SNC nodes. L3 cache allocation bitmaps also apply to all SNC nodes. But note that the amount of L3 cache represented by each bit is divided by the number of SNC nodes per L3 cache. E.g. with a 100MB cache on a system with 10-bit allocation masks each bit normally represents 10MB. With SNC mode enabled with two SNC nodes per L3 cache, each bit only represents 5MB. Memory bandwidth Allocation and monitoring ========================================== For Memory bandwidth resource, by default the user controls the resource by indicating the percentage of total memory bandwidth. The minimum bandwidth percentage value for each cpu model is predefined and can be looked up through "info/MB/min_bandwidth". The bandwidth granularity that is allocated is also dependent on the cpu model and can be looked up at "info/MB/bandwidth_gran". The available bandwidth control steps are: min_bw + N * bw_gran. Intermediate values are rounded to the next control step available on the hardware. The bandwidth throttling is a core specific mechanism on some of Intel SKUs. Using a high bandwidth and a low bandwidth setting on two threads sharing a core may result in both threads being throttled to use the low bandwidth (see "thread_throttle_mode"). The fact that Memory bandwidth allocation(MBA) may be a core specific mechanism where as memory bandwidth monitoring(MBM) is done at the package level may lead to confusion when users try to apply control via the MBA and then monitor the bandwidth to see if the controls are effective. Below are such scenarios: 1. User may *not* see increase in actual bandwidth when percentage values are increased: This can occur when aggregate L2 external bandwidth is more than L3 external bandwidth. Consider an SKL SKU with 24 cores on a package and where L2 external is 10GBps (hence aggregate L2 external bandwidth is 240GBps) and L3 external bandwidth is 100GBps. Now a workload with '20 threads, having 50% bandwidth, each consuming 5GBps' consumes the max L3 bandwidth of 100GBps although the percentage value specified is only 50% << 100%. Hence increasing the bandwidth percentage will not yield any more bandwidth. This is because although the L2 external bandwidth still has capacity, the L3 external bandwidth is fully used. Also note that this would be dependent on number of cores the benchmark is run on. 2. Same bandwidth percentage may mean different actual bandwidth depending on # of threads: For the same SKU in #1, a 'single thread, with 10% bandwidth' and '4 thread, with 10% bandwidth' can consume upto 10GBps and 40GBps although they have same percentage bandwidth of 10%. This is simply because as threads start using more cores in an rdtgroup, the actual bandwidth may increase or vary although user specified bandwidth percentage is same. In order to mitigate this and make the interface more user friendly, resctrl added support for specifying the bandwidth in MiBps as well. The kernel underneath would use a software feedback mechanism or a "Software Controller(mba_sc)" which reads the actual bandwidth using MBM counters and adjust the memory bandwidth percentages to ensure:: "actual bandwidth < user specified bandwidth". By default, the schemata would take the bandwidth percentage values where as user can switch to the "MBA software controller" mode using a mount option 'mba_MBps'. The schemata format is specified in the below sections. L3 schemata file details (code and data prioritization disabled) ---------------------------------------------------------------- With CDP disabled the L3 schemata format is:: L3:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... L3 schemata file details (CDP enabled via mount option to resctrl) ------------------------------------------------------------------ When CDP is enabled L3 control is split into two separate resources so you can specify independent masks for code and data like this:: L3DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... L3CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... L2 schemata file details ------------------------ CDP is supported at L2 using the 'cdpl2' mount option. The schemata format is either:: L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... or L2DATA:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... L2CODE:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... Memory bandwidth Allocation (default mode) ------------------------------------------ Memory b/w domain is L3 cache. :: MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;... Memory bandwidth Allocation specified in MiBps ---------------------------------------------- Memory bandwidth domain is L3 cache. :: MB:<cache_id0>=bw_MiBps0;<cache_id1>=bw_MiBps1;... Slow Memory Bandwidth Allocation (SMBA) --------------------------------------- AMD hardware supports Slow Memory Bandwidth Allocation (SMBA). CXL.memory is the only supported "slow" memory device. With the support of SMBA, the hardware enables bandwidth allocation on the slow memory devices. If there are multiple such devices in the system, the throttling logic groups all the slow sources together and applies the limit on them as a whole. The presence of SMBA (with CXL.memory) is independent of slow memory devices presence. If there are no such devices on the system, then configuring SMBA will have no impact on the performance of the system. The bandwidth domain for slow memory is L3 cache. Its schemata file is formatted as: :: SMBA:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;... Reading/writing the schemata file --------------------------------- Reading the schemata file will show the state of all resources on all domains. When writing you only need to specify those values which you wish to change. E.g. :: # cat schemata L3DATA:0=fffff;1=fffff;2=fffff;3=fffff L3CODE:0=fffff;1=fffff;2=fffff;3=fffff # echo "L3DATA:2=3c0;" > schemata # cat schemata L3DATA:0=fffff;1=fffff;2=3c0;3=fffff L3CODE:0=fffff;1=fffff;2=fffff;3=fffff Reading/writing the schemata file (on AMD systems) -------------------------------------------------- Reading the schemata file will show the current bandwidth limit on all domains. The allocated resources are in multiples of one eighth GB/s. When writing to the file, you need to specify what cache id you wish to configure the bandwidth limit. For example, to allocate 2GB/s limit on the first cache id: :: # cat schemata MB:0=2048;1=2048;2=2048;3=2048 L3:0=ffff;1=ffff;2=ffff;3=ffff # echo "MB:1=16" > schemata # cat schemata MB:0=2048;1= 16;2=2048;3=2048 L3:0=ffff;1=ffff;2=ffff;3=ffff Reading/writing the schemata file (on AMD systems) with SMBA feature -------------------------------------------------------------------- Reading and writing the schemata file is the same as without SMBA in above section. For example, to allocate 8GB/s limit on the first cache id: :: # cat schemata SMBA:0=2048;1=2048;2=2048;3=2048 MB:0=2048;1=2048;2=2048;3=2048 L3:0=ffff;1=ffff;2=ffff;3=ffff # echo "SMBA:1=64" > schemata # cat schemata SMBA:0=2048;1= 64;2=2048;3=2048 MB:0=2048;1=2048;2=2048;3=2048 L3:0=ffff;1=ffff;2=ffff;3=ffff Cache Pseudo-Locking ==================== CAT enables a user to specify the amount of cache space that an application can fill. Cache pseudo-locking builds on the fact that a CPU can still read and write data pre-allocated outside its current allocated area on a cache hit. With cache pseudo-locking, data can be preloaded into a reserved portion of cache that no application can fill, and from that point on will only serve cache hits. The cache pseudo-locked memory is made accessible to user space where an application can map it into its virtual address space and thus have a region of memory with reduced average read latency. The creation of a cache pseudo-locked region is triggered by a request from the user to do so that is accompanied by a schemata of the region to be pseudo-locked. The cache pseudo-locked region is created as follows: - Create a CAT allocation CLOSNEW with a CBM matching the schemata from the user of the cache region that will contain the pseudo-locked memory. This region must not overlap with any current CAT allocation/CLOS on the system and no future overlap with this cache region is allowed while the pseudo-locked region exists. - Create a contiguous region of memory of the same size as the cache region. - Flush the cache, disable hardware prefetchers, disable preemption. - Make CLOSNEW the active CLOS and touch the allocated memory to load it into the cache. - Set the previous CLOS as active. - At this point the closid CLOSNEW can be released - the cache pseudo-locked region is protected as long as its CBM does not appear in any CAT allocation. Even though the cache pseudo-locked region will from this point on not appear in any CBM of any CLOS an application running with any CLOS will be able to access the memory in the pseudo-locked region since the region continues to serve cache hits. - The contiguous region of memory loaded into the cache is exposed to user-space as a character device. Cache pseudo-locking increases the probability that data will remain in the cache via carefully configuring the CAT feature and controlling application behavior. There is no guarantee that data is placed in cache. Instructions like INVD, WBINVD, CLFLUSH, etc. can still evict “locked” data from cache. Power management C-states may shrink or power off cache. Deeper C-states will automatically be restricted on pseudo-locked region creation. It is required that an application using a pseudo-locked region runs with affinity to the cores (or a subset of the cores) associated with the cache on which the pseudo-locked region resides. A sanity check within the code will not allow an application to map pseudo-locked memory unless it runs with affinity to cores associated with the cache on which the pseudo-locked region resides. The sanity check is only done during the initial mmap() handling, there is no enforcement afterwards and the application self needs to ensure it remains affine to the correct cores. Pseudo-locking is accomplished in two stages: 1) During the first stage the system administrator allocates a portion of cache that should be dedicated to pseudo-locking. At this time an equivalent portion of memory is allocated, loaded into allocated cache portion, and exposed as a character device. 2) During the second stage a user-space application maps (mmap()) the pseudo-locked memory into its address space. Cache Pseudo-Locking Interface ------------------------------ A pseudo-locked region is created using the resctrl interface as follows: 1) Create a new resource group by creating a new directory in /sys/fs/resctrl. 2) Change the new resource group's mode to "pseudo-locksetup" by writing "pseudo-locksetup" to the "mode" file. 3) Write the schemata of the pseudo-locked region to the "schemata" file. All bits within the schemata should be "unused" according to the "bit_usage" file. On successful pseudo-locked region creation the "mode" file will contain "pseudo-locked" and a new character device with the same name as the resource group will exist in /dev/pseudo_lock. This character device can be mmap()'ed by user space in order to obtain access to the pseudo-locked memory region. An example of cache pseudo-locked region creation and usage can be found below. Cache Pseudo-Locking Debugging Interface ---------------------------------------- The pseudo-locking debugging interface is enabled by default (if CONFIG_DEBUG_FS is enabled) and can be found in /sys/kernel/debug/resctrl. There is no explicit way for the kernel to test if a provided memory location is present in the cache. The pseudo-locking debugging interface uses the tracing infrastructure to provide two ways to measure cache residency of the pseudo-locked region: 1) Memory access latency using the pseudo_lock_mem_latency tracepoint. Data from these measurements are best visualized using a hist trigger (see example below). In this test the pseudo-locked region is traversed at a stride of 32 bytes while hardware prefetchers and preemption are disabled. This also provides a substitute visualization of cache hits and misses. 2) Cache hit and miss measurements using model specific precision counters if available. Depending on the levels of cache on the system the pseudo_lock_l2 and pseudo_lock_l3 tracepoints are available. When a pseudo-locked region is created a new debugfs directory is created for it in debugfs as /sys/kernel/debug/resctrl/<newdir>. A single write-only file, pseudo_lock_measure, is present in this directory. The measurement of the pseudo-locked region depends on the number written to this debugfs file: 1: writing "1" to the pseudo_lock_measure file will trigger the latency measurement captured in the pseudo_lock_mem_latency tracepoint. See example below. 2: writing "2" to the pseudo_lock_measure file will trigger the L2 cache residency (cache hits and misses) measurement captured in the pseudo_lock_l2 tracepoint. See example below. 3: writing "3" to the pseudo_lock_measure file will trigger the L3 cache residency (cache hits and misses) measurement captured in the pseudo_lock_l3 tracepoint. All measurements are recorded with the tracing infrastructure. This requires the relevant tracepoints to be enabled before the measurement is triggered. Example of latency debugging interface ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this example a pseudo-locked region named "newlock" was created. Here is how we can measure the latency in cycles of reading from this region and visualize this data with a histogram that is available if CONFIG_HIST_TRIGGERS is set:: # :> /sys/kernel/tracing/trace # echo 'hist:keys=latency' > /sys/kernel/tracing/events/resctrl/pseudo_lock_mem_latency/trigger # echo 1 > /sys/kernel/tracing/events/resctrl/pseudo_lock_mem_latency/enable # echo 1 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure # echo 0 > /sys/kernel/tracing/events/resctrl/pseudo_lock_mem_latency/enable # cat /sys/kernel/tracing/events/resctrl/pseudo_lock_mem_latency/hist # event histogram # # trigger info: hist:keys=latency:vals=hitcount:sort=hitcount:size=2048 [active] # { latency: 456 } hitcount: 1 { latency: 50 } hitcount: 83 { latency: 36 } hitcount: 96 { latency: 44 } hitcount: 174 { latency: 48 } hitcount: 195 { latency: 46 } hitcount: 262 { latency: 42 } hitcount: 693 { latency: 40 } hitcount: 3204 { latency: 38 } hitcount: 3484 Totals: Hits: 8192 Entries: 9 Dropped: 0 Example of cache hits/misses debugging ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In this example a pseudo-locked region named "newlock" was created on the L2 cache of a platform. Here is how we can obtain details of the cache hits and misses using the platform's precision counters. :: # :> /sys/kernel/tracing/trace # echo 1 > /sys/kernel/tracing/events/resctrl/pseudo_lock_l2/enable # echo 2 > /sys/kernel/debug/resctrl/newlock/pseudo_lock_measure # echo 0 > /sys/kernel/tracing/events/resctrl/pseudo_lock_l2/enable # cat /sys/kernel/tracing/trace # tracer: nop # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | pseudo_lock_mea-1672 [002] .... 3132.860500: pseudo_lock_l2: hits=4097 miss=0 Examples for RDT allocation usage ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1) Example 1 On a two socket machine (one L3 cache per socket) with just four bits for cache bit masks, minimum b/w of 10% with a memory bandwidth granularity of 10%. :: # mount -t resctrl resctrl /sys/fs/resctrl # cd /sys/fs/resctrl # mkdir p0 p1 # echo "L3:0=3;1=c\nMB:0=50;1=50" > /sys/fs/resctrl/p0/schemata # echo "L3:0=3;1=3\nMB:0=50;1=50" > /sys/fs/resctrl/p1/schemata The default resource group is unmodified, so we have access to all parts of all caches (its schemata file reads "L3:0=f;1=f"). Tasks that are under the control of group "p0" may only allocate from the "lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1. Tasks in group "p1" use the "lower" 50% of cache on both sockets. Similarly, tasks that are under the control of group "p0" may use a maximum memory b/w of 50% on socket0 and 50% on socket 1. Tasks in group "p1" may also use 50% memory b/w on both sockets. Note that unlike cache masks, memory b/w cannot specify whether these allocations can overlap or not. The allocations specifies the maximum b/w that the group may be able to use and the system admin can configure the b/w accordingly. If resctrl is using the software controller (mba_sc) then user can enter the max b/w in MB rather than the percentage values. :: # echo "L3:0=3;1=c\nMB:0=1024;1=500" > /sys/fs/resctrl/p0/schemata # echo "L3:0=3;1=3\nMB:0=1024;1=500" > /sys/fs/resctrl/p1/schemata In the above example the tasks in "p1" and "p0" on socket 0 would use a max b/w of 1024MB where as on socket 1 they would use 500MB. 2) Example 2 Again two sockets, but this time with a more realistic 20-bit mask. Two real time tasks pid=1234 running on processor 0 and pid=5678 running on processor 1 on socket 0 on a 2-socket and dual core machine. To avoid noisy neighbors, each of the two real-time tasks exclusively occupies one quarter of L3 cache on socket 0. :: # mount -t resctrl resctrl /sys/fs/resctrl # cd /sys/fs/resctrl First we reset the schemata for the default group so that the "upper" 50% of the L3 cache on socket 0 and 50% of memory b/w cannot be used by ordinary tasks:: # echo "L3:0=3ff;1=fffff\nMB:0=50;1=100" > schemata Next we make a resource group for our first real time task and give it access to the "top" 25% of the cache on socket 0. :: # mkdir p0 # echo "L3:0=f8000;1=fffff" > p0/schemata Finally we move our first real time task into this resource group. We also use taskset(1) to ensure the task always runs on a dedicated CPU on socket 0. Most uses of resource groups will also constrain which processors tasks run on. :: # echo 1234 > p0/tasks # taskset -cp 1 1234 Ditto for the second real time task (with the remaining 25% of cache):: # mkdir p1 # echo "L3:0=7c00;1=fffff" > p1/schemata # echo 5678 > p1/tasks # taskset -cp 2 5678 For the same 2 socket system with memory b/w resource and CAT L3 the schemata would look like(Assume min_bandwidth 10 and bandwidth_gran is 10): For our first real time task this would request 20% memory b/w on socket 0. :: # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata For our second real time task this would request an other 20% memory b/w on socket 0. :: # echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata 3) Example 3 A single socket system which has real-time tasks running on core 4-7 and non real-time workload assigned to core 0-3. The real-time tasks share text and data, so a per task association is not required and due to interaction with the kernel it's desired that the kernel on these cores shares L3 with the tasks. :: # mount -t resctrl resctrl /sys/fs/resctrl # cd /sys/fs/resctrl First we reset the schemata for the default group so that the "upper" 50% of the L3 cache on socket 0, and 50% of memory bandwidth on socket 0 cannot be used by ordinary tasks:: # echo "L3:0=3ff\nMB:0=50" > schemata Next we make a resource group for our real time cores and give it access to the "top" 50% of the cache on socket 0 and 50% of memory bandwidth on socket 0. :: # mkdir p0 # echo "L3:0=ffc00\nMB:0=50" > p0/schemata Finally we move core 4-7 over to the new group and make sure that the kernel and the tasks running there get 50% of the cache. They should also get 50% of memory bandwidth assuming that the cores 4-7 are SMT siblings and only the real time threads are scheduled on the cores 4-7. :: # echo F0 > p0/cpus 4) Example 4 The resource groups in previous examples were all in the default "shareable" mode allowing sharing of their cache allocations. If one resource group configures a cache allocation then nothing prevents another resource group to overlap with that allocation. In this example a new exclusive resource group will be created on a L2 CAT system with two L2 cache instances that can be configured with an 8-bit capacity bitmask. The new exclusive resource group will be configured to use 25% of each cache instance. :: # mount -t resctrl resctrl /sys/fs/resctrl/ # cd /sys/fs/resctrl First, we observe that the default group is configured to allocate to all L2 cache:: # cat schemata L2:0=ff;1=ff We could attempt to create the new resource group at this point, but it will fail because of the overlap with the schemata of the default group:: # mkdir p0 # echo 'L2:0=0x3;1=0x3' > p0/schemata # cat p0/mode shareable # echo exclusive > p0/mode -sh: echo: write error: Invalid argument # cat info/last_cmd_status schemata overlaps To ensure that there is no overlap with another resource group the default resource group's schemata has to change, making it possible for the new resource group to become exclusive. :: # echo 'L2:0=0xfc;1=0xfc' > schemata # echo exclusive > p0/mode # grep . p0/* p0/cpus:0 p0/mode:exclusive p0/schemata:L2:0=03;1=03 p0/size:L2:0=262144;1=262144 A new resource group will on creation not overlap with an exclusive resource group:: # mkdir p1 # grep . p1/* p1/cpus:0 p1/mode:shareable p1/schemata:L2:0=fc;1=fc p1/size:L2:0=786432;1=786432 The bit_usage will reflect how the cache is used:: # cat info/L2/bit_usage 0=SSSSSSEE;1=SSSSSSEE A resource group cannot be forced to overlap with an exclusive resource group:: # echo 'L2:0=0x1;1=0x1' > p1/schemata -sh: echo: write error: Invalid argument # cat info/last_cmd_status overlaps with exclusive group Example of Cache Pseudo-Locking ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Lock portion of L2 cache from cache id 1 using CBM 0x3. Pseudo-locked region is exposed at /dev/pseudo_lock/newlock that can be provided to application for argument to mmap(). :: # mount -t resctrl resctrl /sys/fs/resctrl/ # cd /sys/fs/resctrl Ensure that there are bits available that can be pseudo-locked, since only unused bits can be pseudo-locked the bits to be pseudo-locked needs to be removed from the default resource group's schemata:: # cat info/L2/bit_usage 0=SSSSSSSS;1=SSSSSSSS # echo 'L2:1=0xfc' > schemata # cat info/L2/bit_usage 0=SSSSSSSS;1=SSSSSS00 Create a new resource group that will be associated with the pseudo-locked region, indicate that it will be used for a pseudo-locked region, and configure the requested pseudo-locked region capacity bitmask:: # mkdir newlock # echo pseudo-locksetup > newlock/mode # echo 'L2:1=0x3' > newlock/schemata On success the resource group's mode will change to pseudo-locked, the bit_usage will reflect the pseudo-locked region, and the character device exposing the pseudo-locked region will exist:: # cat newlock/mode pseudo-locked # cat info/L2/bit_usage 0=SSSSSSSS;1=SSSSSSPP # ls -l /dev/pseudo_lock/newlock crw------- 1 root root 243, 0 Apr 3 05:01 /dev/pseudo_lock/newlock :: /* * Example code to access one page of pseudo-locked cache region * from user space. */ #define _GNU_SOURCE #include <fcntl.h> #include <sched.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> /* * It is required that the application runs with affinity to only * cores associated with the pseudo-locked region. Here the cpu * is hardcoded for convenience of example. */ static int cpuid = 2; int main(int argc, char *argv[]) { cpu_set_t cpuset; long page_size; void *mapping; int dev_fd; int ret; page_size = sysconf(_SC_PAGESIZE); CPU_ZERO(&cpuset); CPU_SET(cpuid, &cpuset); ret = sched_setaffinity(0, sizeof(cpuset), &cpuset); if (ret < 0) { perror("sched_setaffinity"); exit(EXIT_FAILURE); } dev_fd = open("/dev/pseudo_lock/newlock", O_RDWR); if (dev_fd < 0) { perror("open"); exit(EXIT_FAILURE); } mapping = mmap(0, page_size, PROT_READ | PROT_WRITE, MAP_SHARED, dev_fd, 0); if (mapping == MAP_FAILED) { perror("mmap"); close(dev_fd); exit(EXIT_FAILURE); } /* Application interacts with pseudo-locked memory @mapping */ ret = munmap(mapping, page_size); if (ret < 0) { perror("munmap"); close(dev_fd); exit(EXIT_FAILURE); } close(dev_fd); exit(EXIT_SUCCESS); } Locking between applications ---------------------------- Certain operations on the resctrl filesystem, composed of read/writes to/from multiple files, must be atomic. As an example, the allocation of an exclusive reservation of L3 cache involves: 1. Read the cbmmasks from each directory or the per-resource "bit_usage" 2. Find a contiguous set of bits in the global CBM bitmask that is clear in any of the directory cbmmasks 3. Create a new directory 4. Set the bits found in step 2 to the new directory "schemata" file If two applications attempt to allocate space concurrently then they can end up allocating the same bits so the reservations are shared instead of exclusive. To coordinate atomic operations on the resctrlfs and to avoid the problem above, the following locking procedure is recommended: Locking is based on flock, which is available in libc and also as a shell script command Write lock: A) Take flock(LOCK_EX) on /sys/fs/resctrl B) Read/write the directory structure. C) funlock Read lock: A) Take flock(LOCK_SH) on /sys/fs/resctrl B) If success read the directory structure. C) funlock Example with bash:: # Atomically read directory structure $ flock -s /sys/fs/resctrl/ find /sys/fs/resctrl # Read directory contents and create new subdirectory $ cat create-dir.sh find /sys/fs/resctrl/ > output.txt mask = function-of(output.txt) mkdir /sys/fs/resctrl/newres/ echo mask > /sys/fs/resctrl/newres/schemata $ flock /sys/fs/resctrl/ ./create-dir.sh Example with C:: /* * Example code do take advisory locks * before accessing resctrl filesystem */ #include <sys/file.h> #include <stdlib.h> void resctrl_take_shared_lock(int fd) { int ret; /* take shared lock on resctrl filesystem */ ret = flock(fd, LOCK_SH); if (ret) { perror("flock"); exit(-1); } } void resctrl_take_exclusive_lock(int fd) { int ret; /* release lock on resctrl filesystem */ ret = flock(fd, LOCK_EX); if (ret) { perror("flock"); exit(-1); } } void resctrl_release_lock(int fd) { int ret; /* take shared lock on resctrl filesystem */ ret = flock(fd, LOCK_UN); if (ret) { perror("flock"); exit(-1); } } void main(void) { int fd, ret; fd = open("/sys/fs/resctrl", O_DIRECTORY); if (fd == -1) { perror("open"); exit(-1); } resctrl_take_shared_lock(fd); /* code to read directory contents */ resctrl_release_lock(fd); resctrl_take_exclusive_lock(fd); /* code to read and write directory contents */ resctrl_release_lock(fd); } Examples for RDT Monitoring along with allocation usage ======================================================= Reading monitored data ---------------------- Reading an event file (for ex: mon_data/mon_L3_00/llc_occupancy) would show the current snapshot of LLC occupancy of the corresponding MON group or CTRL_MON group. Example 1 (Monitor CTRL_MON group and subset of tasks in CTRL_MON group) ------------------------------------------------------------------------ On a two socket machine (one L3 cache per socket) with just four bits for cache bit masks:: # mount -t resctrl resctrl /sys/fs/resctrl # cd /sys/fs/resctrl # mkdir p0 p1 # echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata # echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata # echo 5678 > p1/tasks # echo 5679 > p1/tasks The default resource group is unmodified, so we have access to all parts of all caches (its schemata file reads "L3:0=f;1=f"). Tasks that are under the control of group "p0" may only allocate from the "lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1. Tasks in group "p1" use the "lower" 50% of cache on both sockets. Create monitor groups and assign a subset of tasks to each monitor group. :: # cd /sys/fs/resctrl/p1/mon_groups # mkdir m11 m12 # echo 5678 > m11/tasks # echo 5679 > m12/tasks fetch data (data shown in bytes) :: # cat m11/mon_data/mon_L3_00/llc_occupancy 16234000 # cat m11/mon_data/mon_L3_01/llc_occupancy 14789000 # cat m12/mon_data/mon_L3_00/llc_occupancy 16789000 The parent ctrl_mon group shows the aggregated data. :: # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy 31234000 Example 2 (Monitor a task from its creation) -------------------------------------------- On a two socket machine (one L3 cache per socket):: # mount -t resctrl resctrl /sys/fs/resctrl # cd /sys/fs/resctrl # mkdir p0 p1 An RMID is allocated to the group once its created and hence the <cmd> below is monitored from its creation. :: # echo $$ > /sys/fs/resctrl/p1/tasks # <cmd> Fetch the data:: # cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy 31789000 Example 3 (Monitor without CAT support or before creating CAT groups) --------------------------------------------------------------------- Assume a system like HSW has only CQM and no CAT support. In this case the resctrl will still mount but cannot create CTRL_MON directories. But user can create different MON groups within the root group thereby able to monitor all tasks including kernel threads. This can also be used to profile jobs cache size footprint before being able to allocate them to different allocation groups. :: # mount -t resctrl resctrl /sys/fs/resctrl # cd /sys/fs/resctrl # mkdir mon_groups/m01 # mkdir mon_groups/m02 # echo 3478 > /sys/fs/resctrl/mon_groups/m01/tasks # echo 2467 > /sys/fs/resctrl/mon_groups/m02/tasks Monitor the groups separately and also get per domain data. From the below its apparent that the tasks are mostly doing work on domain(socket) 0. :: # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_00/llc_occupancy 31234000 # cat /sys/fs/resctrl/mon_groups/m01/mon_L3_01/llc_occupancy 34555 # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_00/llc_occupancy 31234000 # cat /sys/fs/resctrl/mon_groups/m02/mon_L3_01/llc_occupancy 32789 Example 4 (Monitor real time tasks) ----------------------------------- A single socket system which has real time tasks running on cores 4-7 and non real time tasks on other cpus. We want to monitor the cache occupancy of the real time threads on these cores. :: # mount -t resctrl resctrl /sys/fs/resctrl # cd /sys/fs/resctrl # mkdir p1 Move the cpus 4-7 over to p1:: # echo f0 > p1/cpus View the llc occupancy snapshot:: # cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy 11234000 Intel RDT Errata ================ Intel MBM Counters May Report System Memory Bandwidth Incorrectly ----------------------------------------------------------------- Errata SKX99 for Skylake server and BDF102 for Broadwell server. Problem: Intel Memory Bandwidth Monitoring (MBM) counters track metrics according to the assigned Resource Monitor ID (RMID) for that logical core. The IA32_QM_CTR register (MSR 0xC8E), used to report these metrics, may report incorrect system bandwidth for certain RMID values. Implication: Due to the errata, system memory bandwidth may not match what is reported. Workaround: MBM total and local readings are corrected according to the following correction factor table: +---------------+---------------+---------------+-----------------+ |core count |rmid count |rmid threshold |correction factor| +---------------+---------------+---------------+-----------------+ |1 |8 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |2 |16 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |3 |24 |15 |0.969650 | +---------------+---------------+---------------+-----------------+ |4 |32 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |6 |48 |31 |0.969650 | +---------------+---------------+---------------+-----------------+ |7 |56 |47 |1.142857 | +---------------+---------------+---------------+-----------------+ |8 |64 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |9 |72 |63 |1.185115 | +---------------+---------------+---------------+-----------------+ |10 |80 |63 |1.066553 | +---------------+---------------+---------------+-----------------+ |11 |88 |79 |1.454545 | +---------------+---------------+---------------+-----------------+ |12 |96 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |13 |104 |95 |1.230769 | +---------------+---------------+---------------+-----------------+ |14 |112 |95 |1.142857 | +---------------+---------------+---------------+-----------------+ |15 |120 |95 |1.066667 | +---------------+---------------+---------------+-----------------+ |16 |128 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |17 |136 |127 |1.254863 | +---------------+---------------+---------------+-----------------+ |18 |144 |127 |1.185255 | +---------------+---------------+---------------+-----------------+ |19 |152 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |20 |160 |127 |1.066667 | +---------------+---------------+---------------+-----------------+ |21 |168 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |22 |176 |159 |1.454334 | +---------------+---------------+---------------+-----------------+ |23 |184 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |24 |192 |127 |0.969744 | +---------------+---------------+---------------+-----------------+ |25 |200 |191 |1.280246 | +---------------+---------------+---------------+-----------------+ |26 |208 |191 |1.230921 | +---------------+---------------+---------------+-----------------+ |27 |216 |0 |1.000000 | +---------------+---------------+---------------+-----------------+ |28 |224 |191 |1.143118 | +---------------+---------------+---------------+-----------------+ If rmid > rmid threshold, MBM total and local values should be multiplied by the correction factor. See: 1. Erratum SKX99 in Intel Xeon Processor Scalable Family Specification Update: http://web.archive.org/web/20200716124958/https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html 2. Erratum BDF102 in Intel Xeon E5-2600 v4 Processor Product Family Specification Update: http://web.archive.org/web/20191125200531/https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v4-spec-update.pdf 3. The errata in Intel Resource Director Technology (Intel RDT) on 2nd Generation Intel Xeon Scalable Processors Reference Manual: https://software.intel.com/content/www/us/en/develop/articles/intel-resource-director-technology-rdt-reference-manual.html for further information. |