Documentation / atomic_bitops.txt


Based on kernel version 6.8. Page generated on 2024-03-11 21:26 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
=============
Atomic bitops
=============

While our bitmap_{}() functions are non-atomic, we have a number of operations
operating on single bits in a bitmap that are atomic.


API
---

The single bit operations are:

Non-RMW ops:

  test_bit()

RMW atomic operations without return value:

  {set,clear,change}_bit()
  clear_bit_unlock()

RMW atomic operations with return value:

  test_and_{set,clear,change}_bit()
  test_and_set_bit_lock()

Barriers:

  smp_mb__{before,after}_atomic()


All RMW atomic operations have a '__' prefixed variant which is non-atomic.


SEMANTICS
---------

Non-atomic ops:

In particular __clear_bit_unlock() suffers the same issue as atomic_set(),
which is why the generic version maps to clear_bit_unlock(), see atomic_t.txt.


RMW ops:

The test_and_{}_bit() operations return the original value of the bit.


ORDERING
--------

Like with atomic_t, the rule of thumb is:

 - non-RMW operations are unordered;

 - RMW operations that have no return value are unordered;

 - RMW operations that have a return value are fully ordered.

 - RMW operations that are conditional are fully ordered.

Except for a successful test_and_set_bit_lock() which has ACQUIRE semantics,
clear_bit_unlock() which has RELEASE semantics and test_bit_acquire which has
ACQUIRE semantics.

Since a platform only has a single means of achieving atomic operations
the same barriers as for atomic_t are used, see atomic_t.txt.