Documentation / filesystems / fsverity.rst

Based on kernel version 6.9. Page generated on 2024-05-14 10:02 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
.. SPDX-License-Identifier: GPL-2.0

.. _fsverity:

fs-verity: read-only file-based authenticity protection


fs-verity (``fs/verity/``) is a support layer that filesystems can
hook into to support transparent integrity and authenticity protection
of read-only files.  Currently, it is supported by the ext4, f2fs, and
btrfs filesystems.  Like fscrypt, not too much filesystem-specific
code is needed to support fs-verity.

fs-verity is similar to `dm-verity
but works on files rather than block devices.  On regular files on
filesystems supporting fs-verity, userspace can execute an ioctl that
causes the filesystem to build a Merkle tree for the file and persist
it to a filesystem-specific location associated with the file.

After this, the file is made readonly, and all reads from the file are
automatically verified against the file's Merkle tree.  Reads of any
corrupted data, including mmap reads, will fail.

Userspace can use another ioctl to retrieve the root hash (actually
the "fs-verity file digest", which is a hash that includes the Merkle
tree root hash) that fs-verity is enforcing for the file.  This ioctl
executes in constant time, regardless of the file size.

fs-verity is essentially a way to hash a file in constant time,
subject to the caveat that reads which would violate the hash will
fail at runtime.

Use cases

By itself, fs-verity only provides integrity protection, i.e.
detection of accidental (non-malicious) corruption.

However, because fs-verity makes retrieving the file hash extremely
efficient, it's primarily meant to be used as a tool to support
authentication (detection of malicious modifications) or auditing
(logging file hashes before use).

A standard file hash could be used instead of fs-verity.  However,
this is inefficient if the file is large and only a small portion may
be accessed.  This is often the case for Android application package
(APK) files, for example.  These typically contain many translations,
classes, and other resources that are infrequently or even never
accessed on a particular device.  It would be slow and wasteful to
read and hash the entire file before starting the application.

Unlike an ahead-of-time hash, fs-verity also re-verifies data each
time it's paged in.  This ensures that malicious disk firmware can't
undetectably change the contents of the file at runtime.

fs-verity does not replace or obsolete dm-verity.  dm-verity should
still be used on read-only filesystems.  fs-verity is for files that
must live on a read-write filesystem because they are independently
updated and potentially user-installed, so dm-verity cannot be used.

fs-verity does not mandate a particular scheme for authenticating its
file hashes.  (Similarly, dm-verity does not mandate a particular
scheme for authenticating its block device root hashes.)  Options for
authenticating fs-verity file hashes include:

- Trusted userspace code.  Often, the userspace code that accesses
  files can be trusted to authenticate them.  Consider e.g. an
  application that wants to authenticate data files before using them,
  or an application loader that is part of the operating system (which
  is already authenticated in a different way, such as by being loaded
  from a read-only partition that uses dm-verity) and that wants to
  authenticate applications before loading them.  In these cases, this
  trusted userspace code can authenticate a file's contents by
  retrieving its fs-verity digest using `FS_IOC_MEASURE_VERITY`_, then
  verifying a signature of it using any userspace cryptographic
  library that supports digital signatures.

- Integrity Measurement Architecture (IMA).  IMA supports fs-verity
  file digests as an alternative to its traditional full file digests.
  "IMA appraisal" enforces that files contain a valid, matching
  signature in their "security.ima" extended attribute, as controlled
  by the IMA policy.  For more information, see the IMA documentation.

- Trusted userspace code in combination with `Built-in signature
  verification`_.  This approach should be used only with great care.

User API


The FS_IOC_ENABLE_VERITY ioctl enables fs-verity on a file.  It takes
in a pointer to a struct fsverity_enable_arg, defined as

    struct fsverity_enable_arg {
            __u32 version;
            __u32 hash_algorithm;
            __u32 block_size;
            __u32 salt_size;
            __u64 salt_ptr;
            __u32 sig_size;
            __u32 __reserved1;
            __u64 sig_ptr;
            __u64 __reserved2[11];

This structure contains the parameters of the Merkle tree to build for
the file.  It must be initialized as follows:

- ``version`` must be 1.
- ``hash_algorithm`` must be the identifier for the hash algorithm to
  use for the Merkle tree, such as FS_VERITY_HASH_ALG_SHA256.  See
  ``include/uapi/linux/fsverity.h`` for the list of possible values.
- ``block_size`` is the Merkle tree block size, in bytes.  In Linux
  v6.3 and later, this can be any power of 2 between (inclusively)
  1024 and the minimum of the system page size and the filesystem
  block size.  In earlier versions, the page size was the only allowed
- ``salt_size`` is the size of the salt in bytes, or 0 if no salt is
  provided.  The salt is a value that is prepended to every hashed
  block; it can be used to personalize the hashing for a particular
  file or device.  Currently the maximum salt size is 32 bytes.
- ``salt_ptr`` is the pointer to the salt, or NULL if no salt is
- ``sig_size`` is the size of the builtin signature in bytes, or 0 if no
  builtin signature is provided.  Currently the builtin signature is
  (somewhat arbitrarily) limited to 16128 bytes.
- ``sig_ptr``  is the pointer to the builtin signature, or NULL if no
  builtin signature is provided.  A builtin signature is only needed
  if the `Built-in signature verification`_ feature is being used.  It
  is not needed for IMA appraisal, and it is not needed if the file
  signature is being handled entirely in userspace.
- All reserved fields must be zeroed.

FS_IOC_ENABLE_VERITY causes the filesystem to build a Merkle tree for
the file and persist it to a filesystem-specific location associated
with the file, then mark the file as a verity file.  This ioctl may
take a long time to execute on large files, and it is interruptible by
fatal signals.

FS_IOC_ENABLE_VERITY checks for write access to the inode.  However,
it must be executed on an O_RDONLY file descriptor and no processes
can have the file open for writing.  Attempts to open the file for
writing while this ioctl is executing will fail with ETXTBSY.  (This
is necessary to guarantee that no writable file descriptors will exist
after verity is enabled, and to guarantee that the file's contents are
stable while the Merkle tree is being built over it.)

On success, FS_IOC_ENABLE_VERITY returns 0, and the file becomes a
verity file.  On failure (including the case of interruption by a
fatal signal), no changes are made to the file.

FS_IOC_ENABLE_VERITY can fail with the following errors:

- ``EACCES``: the process does not have write access to the file
- ``EBADMSG``: the builtin signature is malformed
- ``EBUSY``: this ioctl is already running on the file
- ``EEXIST``: the file already has verity enabled
- ``EFAULT``: the caller provided inaccessible memory
- ``EFBIG``: the file is too large to enable verity on
- ``EINTR``: the operation was interrupted by a fatal signal
- ``EINVAL``: unsupported version, hash algorithm, or block size; or
  reserved bits are set; or the file descriptor refers to neither a
  regular file nor a directory.
- ``EISDIR``: the file descriptor refers to a directory
- ``EKEYREJECTED``: the builtin signature doesn't match the file
- ``EMSGSIZE``: the salt or builtin signature is too long
- ``ENOKEY``: the ".fs-verity" keyring doesn't contain the certificate
  needed to verify the builtin signature
- ``ENOPKG``: fs-verity recognizes the hash algorithm, but it's not
  available in the kernel's crypto API as currently configured (e.g.
  for SHA-512, missing CONFIG_CRYPTO_SHA512).
- ``ENOTTY``: this type of filesystem does not implement fs-verity
- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
  support; or the filesystem superblock has not had the 'verity'
  feature enabled on it; or the filesystem does not support fs-verity
  on this file.  (See `Filesystem support`_.)
- ``EPERM``: the file is append-only; or, a builtin signature is
  required and one was not provided.
- ``EROFS``: the filesystem is read-only
- ``ETXTBSY``: someone has the file open for writing.  This can be the
  caller's file descriptor, another open file descriptor, or the file
  reference held by a writable memory map.


The FS_IOC_MEASURE_VERITY ioctl retrieves the digest of a verity file.
The fs-verity file digest is a cryptographic digest that identifies
the file contents that are being enforced on reads; it is computed via
a Merkle tree and is different from a traditional full-file digest.

This ioctl takes in a pointer to a variable-length structure::

    struct fsverity_digest {
            __u16 digest_algorithm;
            __u16 digest_size; /* input/output */
            __u8 digest[];

``digest_size`` is an input/output field.  On input, it must be
initialized to the number of bytes allocated for the variable-length
``digest`` field.

On success, 0 is returned and the kernel fills in the structure as

- ``digest_algorithm`` will be the hash algorithm used for the file
  digest.  It will match ``fsverity_enable_arg::hash_algorithm``.
- ``digest_size`` will be the size of the digest in bytes, e.g. 32
  for SHA-256.  (This can be redundant with ``digest_algorithm``.)
- ``digest`` will be the actual bytes of the digest.

FS_IOC_MEASURE_VERITY is guaranteed to execute in constant time,
regardless of the size of the file.

FS_IOC_MEASURE_VERITY can fail with the following errors:

- ``EFAULT``: the caller provided inaccessible memory
- ``ENODATA``: the file is not a verity file
- ``ENOTTY``: this type of filesystem does not implement fs-verity
- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
  support, or the filesystem superblock has not had the 'verity'
  feature enabled on it.  (See `Filesystem support`_.)
- ``EOVERFLOW``: the digest is longer than the specified
  ``digest_size`` bytes.  Try providing a larger buffer.


The FS_IOC_READ_VERITY_METADATA ioctl reads verity metadata from a
verity file.  This ioctl is available since Linux v5.12.

This ioctl allows writing a server program that takes a verity file
and serves it to a client program, such that the client can do its own
fs-verity compatible verification of the file.  This only makes sense
if the client doesn't trust the server and if the server needs to
provide the storage for the client.

This is a fairly specialized use case, and most fs-verity users won't
need this ioctl.

This ioctl takes in a pointer to the following structure::


   struct fsverity_read_metadata_arg {
           __u64 metadata_type;
           __u64 offset;
           __u64 length;
           __u64 buf_ptr;
           __u64 __reserved;

``metadata_type`` specifies the type of metadata to read:

- ``FS_VERITY_METADATA_TYPE_MERKLE_TREE`` reads the blocks of the
  Merkle tree.  The blocks are returned in order from the root level
  to the leaf level.  Within each level, the blocks are returned in
  the same order that their hashes are themselves hashed.
  See `Merkle tree`_ for more information.

- ``FS_VERITY_METADATA_TYPE_DESCRIPTOR`` reads the fs-verity
  descriptor.  See `fs-verity descriptor`_.

- ``FS_VERITY_METADATA_TYPE_SIGNATURE`` reads the builtin signature
  which was passed to FS_IOC_ENABLE_VERITY, if any.  See `Built-in
  signature verification`_.

The semantics are similar to those of ``pread()``.  ``offset``
specifies the offset in bytes into the metadata item to read from, and
``length`` specifies the maximum number of bytes to read from the
metadata item.  ``buf_ptr`` is the pointer to the buffer to read into,
cast to a 64-bit integer.  ``__reserved`` must be 0.  On success, the
number of bytes read is returned.  0 is returned at the end of the
metadata item.  The returned length may be less than ``length``, for
example if the ioctl is interrupted.

The metadata returned by FS_IOC_READ_VERITY_METADATA isn't guaranteed
to be authenticated against the file digest that would be returned by
`FS_IOC_MEASURE_VERITY`_, as the metadata is expected to be used to
implement fs-verity compatible verification anyway (though absent a
malicious disk, the metadata will indeed match).  E.g. to implement
this ioctl, the filesystem is allowed to just read the Merkle tree
blocks from disk without actually verifying the path to the root node.

FS_IOC_READ_VERITY_METADATA can fail with the following errors:

- ``EFAULT``: the caller provided inaccessible memory
- ``EINTR``: the ioctl was interrupted before any data was read
- ``EINVAL``: reserved fields were set, or ``offset + length``
- ``ENODATA``: the file is not a verity file, or
  FS_VERITY_METADATA_TYPE_SIGNATURE was requested but the file doesn't
  have a builtin signature
- ``ENOTTY``: this type of filesystem does not implement fs-verity, or
  this ioctl is not yet implemented on it
- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
  support, or the filesystem superblock has not had the 'verity'
  feature enabled on it.  (See `Filesystem support`_.)


The existing ioctl FS_IOC_GETFLAGS (which isn't specific to fs-verity)
can also be used to check whether a file has fs-verity enabled or not.
To do so, check for FS_VERITY_FL (0x00100000) in the returned flags.

The verity flag is not settable via FS_IOC_SETFLAGS.  You must use
FS_IOC_ENABLE_VERITY instead, since parameters must be provided.


Since Linux v5.5, the statx() system call sets STATX_ATTR_VERITY if
the file has fs-verity enabled.  This can perform better than
FS_IOC_GETFLAGS and FS_IOC_MEASURE_VERITY because it doesn't require
opening the file, and opening verity files can be expensive.

.. _accessing_verity_files:

Accessing verity files

Applications can transparently access a verity file just like a
non-verity one, with the following exceptions:

- Verity files are readonly.  They cannot be opened for writing or
  truncate()d, even if the file mode bits allow it.  Attempts to do
  one of these things will fail with EPERM.  However, changes to
  metadata such as owner, mode, timestamps, and xattrs are still
  allowed, since these are not measured by fs-verity.  Verity files
  can also still be renamed, deleted, and linked to.

- Direct I/O is not supported on verity files.  Attempts to use direct
  I/O on such files will fall back to buffered I/O.

- DAX (Direct Access) is not supported on verity files, because this
  would circumvent the data verification.

- Reads of data that doesn't match the verity Merkle tree will fail
  with EIO (for read()) or SIGBUS (for mmap() reads).

- If the sysctl "fs.verity.require_signatures" is set to 1 and the
  file is not signed by a key in the ".fs-verity" keyring, then
  opening the file will fail.  See `Built-in signature verification`_.

Direct access to the Merkle tree is not supported.  Therefore, if a
verity file is copied, or is backed up and restored, then it will lose
its "verity"-ness.  fs-verity is primarily meant for files like
executables that are managed by a package manager.

File digest computation

This section describes how fs-verity hashes the file contents using a
Merkle tree to produce the digest which cryptographically identifies
the file contents.  This algorithm is the same for all filesystems
that support fs-verity.

Userspace only needs to be aware of this algorithm if it needs to
compute fs-verity file digests itself, e.g. in order to sign files.

.. _fsverity_merkle_tree:

Merkle tree

The file contents is divided into blocks, where the block size is
configurable but is usually 4096 bytes.  The end of the last block is
zero-padded if needed.  Each block is then hashed, producing the first
level of hashes.  Then, the hashes in this first level are grouped
into 'blocksize'-byte blocks (zero-padding the ends as needed) and
these blocks are hashed, producing the second level of hashes.  This
proceeds up the tree until only a single block remains.  The hash of
this block is the "Merkle tree root hash".

If the file fits in one block and is nonempty, then the "Merkle tree
root hash" is simply the hash of the single data block.  If the file
is empty, then the "Merkle tree root hash" is all zeroes.

The "blocks" here are not necessarily the same as "filesystem blocks".

If a salt was specified, then it's zero-padded to the closest multiple
of the input size of the hash algorithm's compression function, e.g.
64 bytes for SHA-256 or 128 bytes for SHA-512.  The padded salt is
prepended to every data or Merkle tree block that is hashed.

The purpose of the block padding is to cause every hash to be taken
over the same amount of data, which simplifies the implementation and
keeps open more possibilities for hardware acceleration.  The purpose
of the salt padding is to make the salting "free" when the salted hash
state is precomputed, then imported for each hash.

Example: in the recommended configuration of SHA-256 and 4K blocks,
128 hash values fit in each block.  Thus, each level of the Merkle
tree is approximately 128 times smaller than the previous, and for
large files the Merkle tree's size converges to approximately 1/127 of
the original file size.  However, for small files, the padding is
significant, making the space overhead proportionally more.

.. _fsverity_descriptor:

fs-verity descriptor

By itself, the Merkle tree root hash is ambiguous.  For example, it
can't a distinguish a large file from a small second file whose data
is exactly the top-level hash block of the first file.  Ambiguities
also arise from the convention of padding to the next block boundary.

To solve this problem, the fs-verity file digest is actually computed
as a hash of the following structure, which contains the Merkle tree
root hash as well as other fields such as the file size::

    struct fsverity_descriptor {
            __u8 version;           /* must be 1 */
            __u8 hash_algorithm;    /* Merkle tree hash algorithm */
            __u8 log_blocksize;     /* log2 of size of data and tree blocks */
            __u8 salt_size;         /* size of salt in bytes; 0 if none */
            __le32 __reserved_0x04; /* must be 0 */
            __le64 data_size;       /* size of file the Merkle tree is built over */
            __u8 root_hash[64];     /* Merkle tree root hash */
            __u8 salt[32];          /* salt prepended to each hashed block */
            __u8 __reserved[144];   /* must be 0's */

Built-in signature verification

CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y adds supports for in-kernel
verification of fs-verity builtin signatures.

**IMPORTANT**!  Please take great care before using this feature.
It is not the only way to do signatures with fs-verity, and the
alternatives (such as userspace signature verification, and IMA
appraisal) can be much better.  It's also easy to fall into a trap
of thinking this feature solves more problems than it actually does.

Enabling this option adds the following:

1. At boot time, the kernel creates a keyring named ".fs-verity".  The
   root user can add trusted X.509 certificates to this keyring using
   the add_key() system call.

2. `FS_IOC_ENABLE_VERITY`_ accepts a pointer to a PKCS#7 formatted
   detached signature in DER format of the file's fs-verity digest.
   On success, the ioctl persists the signature alongside the Merkle
   tree.  Then, any time the file is opened, the kernel verifies the
   file's actual digest against this signature, using the certificates
   in the ".fs-verity" keyring.

3. A new sysctl "fs.verity.require_signatures" is made available.
   When set to 1, the kernel requires that all verity files have a
   correctly signed digest as described in (2).

The data that the signature as described in (2) must be a signature of
is the fs-verity file digest in the following format::

    struct fsverity_formatted_digest {
            char magic[8];                  /* must be "FSVerity" */
            __le16 digest_algorithm;
            __le16 digest_size;
            __u8 digest[];

That's it.  It should be emphasized again that fs-verity builtin
signatures are not the only way to do signatures with fs-verity.  See
`Use cases`_ for an overview of ways in which fs-verity can be used.
fs-verity builtin signatures have some major limitations that should
be carefully considered before using them:

- Builtin signature verification does *not* make the kernel enforce
  that any files actually have fs-verity enabled.  Thus, it is not a
  complete authentication policy.  Currently, if it is used, the only
  way to complete the authentication policy is for trusted userspace
  code to explicitly check whether files have fs-verity enabled with a
  signature before they are accessed.  (With
  fs.verity.require_signatures=1, just checking whether fs-verity is
  enabled suffices.)  But, in this case the trusted userspace code
  could just store the signature alongside the file and verify it
  itself using a cryptographic library, instead of using this feature.

- A file's builtin signature can only be set at the same time that
  fs-verity is being enabled on the file.  Changing or deleting the
  builtin signature later requires re-creating the file.

- Builtin signature verification uses the same set of public keys for
  all fs-verity enabled files on the system.  Different keys cannot be
  trusted for different files; each key is all or nothing.

- The sysctl fs.verity.require_signatures applies system-wide.
  Setting it to 1 only works when all users of fs-verity on the system
  agree that it should be set to 1.  This limitation can prevent
  fs-verity from being used in cases where it would be helpful.

- Builtin signature verification can only use signature algorithms
  that are supported by the kernel.  For example, the kernel does not
  yet support Ed25519, even though this is often the signature
  algorithm that is recommended for new cryptographic designs.

- fs-verity builtin signatures are in PKCS#7 format, and the public
  keys are in X.509 format.  These formats are commonly used,
  including by some other kernel features (which is why the fs-verity
  builtin signatures use them), and are very feature rich.
  Unfortunately, history has shown that code that parses and handles
  these formats (which are from the 1990s and are based on ASN.1)
  often has vulnerabilities as a result of their complexity.  This
  complexity is not inherent to the cryptography itself.

  fs-verity users who do not need advanced features of X.509 and
  PKCS#7 should strongly consider using simpler formats, such as plain
  Ed25519 keys and signatures, and verifying signatures in userspace.

  fs-verity users who choose to use X.509 and PKCS#7 anyway should
  still consider that verifying those signatures in userspace is more
  flexible (for other reasons mentioned earlier in this document) and
  eliminates the need to enable CONFIG_FS_VERITY_BUILTIN_SIGNATURES
  and its associated increase in kernel attack surface.  In some cases
  it can even be necessary, since advanced X.509 and PKCS#7 features
  do not always work as intended with the kernel.  For example, the
  kernel does not check X.509 certificate validity times.

  Note: IMA appraisal, which supports fs-verity, does not use PKCS#7
  for its signatures, so it partially avoids the issues discussed
  here.  IMA appraisal does use X.509.

Filesystem support

fs-verity is supported by several filesystems, described below.  The
CONFIG_FS_VERITY kconfig option must be enabled to use fs-verity on
any of these filesystems.

``include/linux/fsverity.h`` declares the interface between the
``fs/verity/`` support layer and filesystems.  Briefly, filesystems
must provide an ``fsverity_operations`` structure that provides
methods to read and write the verity metadata to a filesystem-specific
location, including the Merkle tree blocks and
``fsverity_descriptor``.  Filesystems must also call functions in
``fs/verity/`` at certain times, such as when a file is opened or when
pages have been read into the pagecache.  (See `Verifying data`_.)


ext4 supports fs-verity since Linux v5.4 and e2fsprogs v1.45.2.

To create verity files on an ext4 filesystem, the filesystem must have
been formatted with ``-O verity`` or had ``tune2fs -O verity`` run on
it.  "verity" is an RO_COMPAT filesystem feature, so once set, old
kernels will only be able to mount the filesystem readonly, and old
versions of e2fsck will be unable to check the filesystem.

Originally, an ext4 filesystem with the "verity" feature could only be
mounted when its block size was equal to the system page size
(typically 4096 bytes).  In Linux v6.3, this limitation was removed.

ext4 sets the EXT4_VERITY_FL on-disk inode flag on verity files.  It
can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be cleared.

ext4 also supports encryption, which can be used simultaneously with
fs-verity.  In this case, the plaintext data is verified rather than
the ciphertext.  This is necessary in order to make the fs-verity file
digest meaningful, since every file is encrypted differently.

ext4 stores the verity metadata (Merkle tree and fsverity_descriptor)
past the end of the file, starting at the first 64K boundary beyond
i_size.  This approach works because (a) verity files are readonly,
and (b) pages fully beyond i_size aren't visible to userspace but can
be read/written internally by ext4 with only some relatively small
changes to ext4.  This approach avoids having to depend on the
EA_INODE feature and on rearchitecturing ext4's xattr support to
support paging multi-gigabyte xattrs into memory, and to support
encrypting xattrs.  Note that the verity metadata *must* be encrypted
when the file is, since it contains hashes of the plaintext data.

ext4 only allows verity on extent-based files.


f2fs supports fs-verity since Linux v5.4 and f2fs-tools v1.11.0.

To create verity files on an f2fs filesystem, the filesystem must have
been formatted with ``-O verity``.

f2fs sets the FADVISE_VERITY_BIT on-disk inode flag on verity files.
It can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be

Like ext4, f2fs stores the verity metadata (Merkle tree and
fsverity_descriptor) past the end of the file, starting at the first
64K boundary beyond i_size.  See explanation for ext4 above.
Moreover, f2fs supports at most 4096 bytes of xattr entries per inode
which usually wouldn't be enough for even a single Merkle tree block.

f2fs doesn't support enabling verity on files that currently have
atomic or volatile writes pending.


btrfs supports fs-verity since Linux v5.15.  Verity-enabled inodes are
marked with a RO_COMPAT inode flag, and the verity metadata is stored
in separate btree items.

Implementation details

Verifying data

fs-verity ensures that all reads of a verity file's data are verified,
regardless of which syscall is used to do the read (e.g. mmap(),
read(), pread()) and regardless of whether it's the first read or a
later read (unless the later read can return cached data that was
already verified).  Below, we describe how filesystems implement this.


For filesystems using Linux's pagecache, the ``->read_folio()`` and
``->readahead()`` methods must be modified to verify folios before
they are marked Uptodate.  Merely hooking ``->read_iter()`` would be
insufficient, since ``->read_iter()`` is not used for memory maps.

Therefore, fs/verity/ provides the function fsverity_verify_blocks()
which verifies data that has been read into the pagecache of a verity
inode.  The containing folio must still be locked and not Uptodate, so
it's not yet readable by userspace.  As needed to do the verification,
fsverity_verify_blocks() will call back into the filesystem to read
hash blocks via fsverity_operations::read_merkle_tree_page().

fsverity_verify_blocks() returns false if verification failed; in this
case, the filesystem must not set the folio Uptodate.  Following this,
as per the usual Linux pagecache behavior, attempts by userspace to
read() from the part of the file containing the folio will fail with
EIO, and accesses to the folio within a memory map will raise SIGBUS.

In principle, verifying a data block requires verifying the entire
path in the Merkle tree from the data block to the root hash.
However, for efficiency the filesystem may cache the hash blocks.
Therefore, fsverity_verify_blocks() only ascends the tree reading hash
blocks until an already-verified hash block is seen.  It then verifies
the path to that block.

This optimization, which is also used by dm-verity, results in
excellent sequential read performance.  This is because usually (e.g.
127 in 128 times for 4K blocks and SHA-256) the hash block from the
bottom level of the tree will already be cached and checked from
reading a previous data block.  However, random reads perform worse.

Block device based filesystems

Block device based filesystems (e.g. ext4 and f2fs) in Linux also use
the pagecache, so the above subsection applies too.  However, they
also usually read many data blocks from a file at once, grouped into a
structure called a "bio".  To make it easier for these types of
filesystems to support fs-verity, fs/verity/ also provides a function
fsverity_verify_bio() which verifies all data blocks in a bio.

ext4 and f2fs also support encryption.  If a verity file is also
encrypted, the data must be decrypted before being verified.  To
support this, these filesystems allocate a "post-read context" for
each bio and store it in ``->bi_private``::

    struct bio_post_read_ctx {
           struct bio *bio;
           struct work_struct work;
           unsigned int cur_step;
           unsigned int enabled_steps;

``enabled_steps`` is a bitmask that specifies whether decryption,
verity, or both is enabled.  After the bio completes, for each needed
postprocessing step the filesystem enqueues the bio_post_read_ctx on a
workqueue, and then the workqueue work does the decryption or
verification.  Finally, folios where no decryption or verity error
occurred are marked Uptodate, and the folios are unlocked.

On many filesystems, files can contain holes.  Normally,
``->readahead()`` simply zeroes hole blocks and considers the
corresponding data to be up-to-date; no bios are issued.  To prevent
this case from bypassing fs-verity, filesystems use
fsverity_verify_blocks() to verify hole blocks.

Filesystems also disable direct I/O on verity files, since otherwise
direct I/O would bypass fs-verity.

Userspace utility

This document focuses on the kernel, but a userspace utility for
fs-verity can be found at:

See the file in the fsverity-utils source tree for details,
including examples of setting up fs-verity protected files.


To test fs-verity, use xfstests.  For example, using `kvm-xfstests

    kvm-xfstests -c ext4,f2fs,btrfs -g verity


This section answers frequently asked questions about fs-verity that
weren't already directly answered in other parts of this document.

:Q: Why isn't fs-verity part of IMA?
:A: fs-verity and IMA (Integrity Measurement Architecture) have
    different focuses.  fs-verity is a filesystem-level mechanism for
    hashing individual files using a Merkle tree.  In contrast, IMA
    specifies a system-wide policy that specifies which files are
    hashed and what to do with those hashes, such as log them,
    authenticate them, or add them to a measurement list.

    IMA supports the fs-verity hashing mechanism as an alternative
    to full file hashes, for those who want the performance and
    security benefits of the Merkle tree based hash.  However, it
    doesn't make sense to force all uses of fs-verity to be through
    IMA.  fs-verity already meets many users' needs even as a
    standalone filesystem feature, and it's testable like other
    filesystem features e.g. with xfstests.

:Q: Isn't fs-verity useless because the attacker can just modify the
    hashes in the Merkle tree, which is stored on-disk?
:A: To verify the authenticity of an fs-verity file you must verify
    the authenticity of the "fs-verity file digest", which
    incorporates the root hash of the Merkle tree.  See `Use cases`_.

:Q: Isn't fs-verity useless because the attacker can just replace a
    verity file with a non-verity one?
:A: See `Use cases`_.  In the initial use case, it's really trusted
    userspace code that authenticates the files; fs-verity is just a
    tool to do this job efficiently and securely.  The trusted
    userspace code will consider non-verity files to be inauthentic.

:Q: Why does the Merkle tree need to be stored on-disk?  Couldn't you
    store just the root hash?
:A: If the Merkle tree wasn't stored on-disk, then you'd have to
    compute the entire tree when the file is first accessed, even if
    just one byte is being read.  This is a fundamental consequence of
    how Merkle tree hashing works.  To verify a leaf node, you need to
    verify the whole path to the root hash, including the root node
    (the thing which the root hash is a hash of).  But if the root
    node isn't stored on-disk, you have to compute it by hashing its
    children, and so on until you've actually hashed the entire file.

    That defeats most of the point of doing a Merkle tree-based hash,
    since if you have to hash the whole file ahead of time anyway,
    then you could simply do sha256(file) instead.  That would be much
    simpler, and a bit faster too.

    It's true that an in-memory Merkle tree could still provide the
    advantage of verification on every read rather than just on the
    first read.  However, it would be inefficient because every time a
    hash page gets evicted (you can't pin the entire Merkle tree into
    memory, since it may be very large), in order to restore it you
    again need to hash everything below it in the tree.  This again
    defeats most of the point of doing a Merkle tree-based hash, since
    a single block read could trigger re-hashing gigabytes of data.

:Q: But couldn't you store just the leaf nodes and compute the rest?
:A: See previous answer; this really just moves up one level, since
    one could alternatively interpret the data blocks as being the
    leaf nodes of the Merkle tree.  It's true that the tree can be
    computed much faster if the leaf level is stored rather than just
    the data, but that's only because each level is less than 1% the
    size of the level below (assuming the recommended settings of
    SHA-256 and 4K blocks).  For the exact same reason, by storing
    "just the leaf nodes" you'd already be storing over 99% of the
    tree, so you might as well simply store the whole tree.

:Q: Can the Merkle tree be built ahead of time, e.g. distributed as
    part of a package that is installed to many computers?
:A: This isn't currently supported.  It was part of the original
    design, but was removed to simplify the kernel UAPI and because it
    wasn't a critical use case.  Files are usually installed once and
    used many times, and cryptographic hashing is somewhat fast on
    most modern processors.

:Q: Why doesn't fs-verity support writes?
:A: Write support would be very difficult and would require a
    completely different design, so it's well outside the scope of
    fs-verity.  Write support would require:

    - A way to maintain consistency between the data and hashes,
      including all levels of hashes, since corruption after a crash
      (especially of potentially the entire file!) is unacceptable.
      The main options for solving this are data journalling,
      copy-on-write, and log-structured volume.  But it's very hard to
      retrofit existing filesystems with new consistency mechanisms.
      Data journalling is available on ext4, but is very slow.

    - Rebuilding the Merkle tree after every write, which would be
      extremely inefficient.  Alternatively, a different authenticated
      dictionary structure such as an "authenticated skiplist" could
      be used.  However, this would be far more complex.

    Compare it to dm-verity vs. dm-integrity.  dm-verity is very
    simple: the kernel just verifies read-only data against a
    read-only Merkle tree.  In contrast, dm-integrity supports writes
    but is slow, is much more complex, and doesn't actually support
    full-device authentication since it authenticates each sector
    independently, i.e. there is no "root hash".  It doesn't really
    make sense for the same device-mapper target to support these two
    very different cases; the same applies to fs-verity.

:Q: Since verity files are immutable, why isn't the immutable bit set?
:A: The existing "immutable" bit (FS_IMMUTABLE_FL) already has a
    specific set of semantics which not only make the file contents
    read-only, but also prevent the file from being deleted, renamed,
    linked to, or having its owner or mode changed.  These extra
    properties are unwanted for fs-verity, so reusing the immutable
    bit isn't appropriate.

:Q: Why does the API use ioctls instead of setxattr() and getxattr()?
:A: Abusing the xattr interface for basically arbitrary syscalls is
    heavily frowned upon by most of the Linux filesystem developers.
    An xattr should really just be an xattr on-disk, not an API to
    e.g. magically trigger construction of a Merkle tree.

:Q: Does fs-verity support remote filesystems?
:A: So far all filesystems that have implemented fs-verity support are
    local filesystems, but in principle any filesystem that can store
    per-file verity metadata can support fs-verity, regardless of
    whether it's local or remote.  Some filesystems may have fewer
    options of where to store the verity metadata; one possibility is
    to store it past the end of the file and "hide" it from userspace
    by manipulating i_size.  The data verification functions provided
    by ``fs/verity/`` also assume that the filesystem uses the Linux
    pagecache, but both local and remote filesystems normally do so.

:Q: Why is anything filesystem-specific at all?  Shouldn't fs-verity
    be implemented entirely at the VFS level?
:A: There are many reasons why this is not possible or would be very
    difficult, including the following:

    - To prevent bypassing verification, folios must not be marked
      Uptodate until they've been verified.  Currently, each
      filesystem is responsible for marking folios Uptodate via
      ``->readahead()``.  Therefore, currently it's not possible for
      the VFS to do the verification on its own.  Changing this would
      require significant changes to the VFS and all filesystems.

    - It would require defining a filesystem-independent way to store
      the verity metadata.  Extended attributes don't work for this
      because (a) the Merkle tree may be gigabytes, but many
      filesystems assume that all xattrs fit into a single 4K
      filesystem block, and (b) ext4 and f2fs encryption doesn't
      encrypt xattrs, yet the Merkle tree *must* be encrypted when the
      file contents are, because it stores hashes of the plaintext
      file contents.

      So the verity metadata would have to be stored in an actual
      file.  Using a separate file would be very ugly, since the
      metadata is fundamentally part of the file to be protected, and
      it could cause problems where users could delete the real file
      but not the metadata file or vice versa.  On the other hand,
      having it be in the same file would break applications unless
      filesystems' notion of i_size were divorced from the VFS's,
      which would be complex and require changes to all filesystems.

    - It's desirable that FS_IOC_ENABLE_VERITY uses the filesystem's
      transaction mechanism so that either the file ends up with
      verity enabled, or no changes were made.  Allowing intermediate
      states to occur after a crash may cause problems.