Based on kernel version 6.13
. Page generated on 2025-01-21 08:20 EST
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 | .. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) ==================== BPF LLVM Relocations ==================== This document describes LLVM BPF backend relocation types. Relocation Record ================= LLVM BPF backend records each relocation with the following 16-byte ELF structure:: typedef struct { Elf64_Addr r_offset; // Offset from the beginning of section. Elf64_Xword r_info; // Relocation type and symbol index. } Elf64_Rel; For example, for the following code:: int g1 __attribute__((section("sec"))); int g2 __attribute__((section("sec"))); static volatile int l1 __attribute__((section("sec"))); static volatile int l2 __attribute__((section("sec"))); int test() { return g1 + g2 + l1 + l2; } Compiled with ``clang --target=bpf -O2 -c test.c``, the following is the code with ``llvm-objdump -dr test.o``:: 0: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll 0000000000000000: R_BPF_64_64 g1 2: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0) 3: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll 0000000000000018: R_BPF_64_64 g2 5: 61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0) 6: 0f 10 00 00 00 00 00 00 r0 += r1 7: 18 01 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r1 = 8 ll 0000000000000038: R_BPF_64_64 sec 9: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0) 10: 0f 10 00 00 00 00 00 00 r0 += r1 11: 18 01 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 r1 = 12 ll 0000000000000058: R_BPF_64_64 sec 13: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0) 14: 0f 10 00 00 00 00 00 00 r0 += r1 15: 95 00 00 00 00 00 00 00 exit There are four relocations in the above for four ``LD_imm64`` instructions. The following ``llvm-readelf -r test.o`` shows the binary values of the four relocations:: Relocation section '.rel.text' at offset 0x190 contains 4 entries: Offset Info Type Symbol's Value Symbol's Name 0000000000000000 0000000600000001 R_BPF_64_64 0000000000000000 g1 0000000000000018 0000000700000001 R_BPF_64_64 0000000000000004 g2 0000000000000038 0000000400000001 R_BPF_64_64 0000000000000000 sec 0000000000000058 0000000400000001 R_BPF_64_64 0000000000000000 sec Each relocation is represented by ``Offset`` (8 bytes) and ``Info`` (8 bytes). For example, the first relocation corresponds to the first instruction (Offset 0x0) and the corresponding ``Info`` indicates the relocation type of ``R_BPF_64_64`` (type 1) and the entry in the symbol table (entry 6). The following is the symbol table with ``llvm-readelf -s test.o``:: Symbol table '.symtab' contains 8 entries: Num: Value Size Type Bind Vis Ndx Name 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND 1: 0000000000000000 0 FILE LOCAL DEFAULT ABS test.c 2: 0000000000000008 4 OBJECT LOCAL DEFAULT 4 l1 3: 000000000000000c 4 OBJECT LOCAL DEFAULT 4 l2 4: 0000000000000000 0 SECTION LOCAL DEFAULT 4 sec 5: 0000000000000000 128 FUNC GLOBAL DEFAULT 2 test 6: 0000000000000000 4 OBJECT GLOBAL DEFAULT 4 g1 7: 0000000000000004 4 OBJECT GLOBAL DEFAULT 4 g2 The 6th entry is global variable ``g1`` with value 0. Similarly, the second relocation is at ``.text`` offset ``0x18``, instruction 3, has a type of ``R_BPF_64_64`` and refers to entry 7 in the symbol table. The second relocation resolves to global variable ``g2`` which has a symbol value 4. The symbol value represents the offset from the start of ``.data`` section where the initial value of the global variable ``g2`` is stored. The third and fourth relocations refer to static variables ``l1`` and ``l2``. From the ``.rel.text`` section above, it is not clear to which symbols they really refer as they both refer to symbol table entry 4, symbol ``sec``, which has ``STT_SECTION`` type and represents a section. So for a static variable or function, the section offset is written to the original insn buffer, which is called ``A`` (addend). Looking at above insn ``7`` and ``11``, they have section offset ``8`` and ``12``. From symbol table, we can find that they correspond to entries ``2`` and ``3`` for ``l1`` and ``l2``. In general, the ``A`` is 0 for global variables and functions, and is the section offset or some computation result based on section offset for static variables/functions. The non-section-offset case refers to function calls. See below for more details. Different Relocation Types ========================== Six relocation types are supported. The following is an overview and ``S`` represents the value of the symbol in the symbol table:: Enum ELF Reloc Type Description BitSize Offset Calculation 0 R_BPF_NONE None 1 R_BPF_64_64 ld_imm64 insn 32 r_offset + 4 S + A 2 R_BPF_64_ABS64 normal data 64 r_offset S + A 3 R_BPF_64_ABS32 normal data 32 r_offset S + A 4 R_BPF_64_NODYLD32 .BTF[.ext] data 32 r_offset S + A 10 R_BPF_64_32 call insn 32 r_offset + 4 (S + A) / 8 - 1 For example, ``R_BPF_64_64`` relocation type is used for ``ld_imm64`` instruction. The actual to-be-relocated data (0 or section offset) is stored at ``r_offset + 4`` and the read/write data bitsize is 32 (4 bytes). The relocation can be resolved with the symbol value plus implicit addend. Note that the ``BitSize`` is 32 which means the section offset must be less than or equal to ``UINT32_MAX`` and this is enforced by LLVM BPF backend. In another case, ``R_BPF_64_ABS64`` relocation type is used for normal 64-bit data. The actual to-be-relocated data is stored at ``r_offset`` and the read/write data bitsize is 64 (8 bytes). The relocation can be resolved with the symbol value plus implicit addend. Both ``R_BPF_64_ABS32`` and ``R_BPF_64_NODYLD32`` types are for 32-bit data. But ``R_BPF_64_NODYLD32`` specifically refers to relocations in ``.BTF`` and ``.BTF.ext`` sections. For cases like bcc where llvm ``ExecutionEngine RuntimeDyld`` is involved, ``R_BPF_64_NODYLD32`` types of relocations should not be resolved to actual function/variable address. Otherwise, ``.BTF`` and ``.BTF.ext`` become unusable by bcc and kernel. Type ``R_BPF_64_32`` is used for call instruction. The call target section offset is stored at ``r_offset + 4`` (32bit) and calculated as ``(S + A) / 8 - 1``. Examples ======== Types ``R_BPF_64_64`` and ``R_BPF_64_32`` are used to resolve ``ld_imm64`` and ``call`` instructions. For example:: __attribute__((noinline)) __attribute__((section("sec1"))) int gfunc(int a, int b) { return a * b; } static __attribute__((noinline)) __attribute__((section("sec1"))) int lfunc(int a, int b) { return a + b; } int global __attribute__((section("sec2"))); int test(int a, int b) { return gfunc(a, b) + lfunc(a, b) + global; } Compiled with ``clang --target=bpf -O2 -c test.c``, we will have following code with `llvm-objdump -dr test.o``:: Disassembly of section .text: 0000000000000000 <test>: 0: bf 26 00 00 00 00 00 00 r6 = r2 1: bf 17 00 00 00 00 00 00 r7 = r1 2: 85 10 00 00 ff ff ff ff call -1 0000000000000010: R_BPF_64_32 gfunc 3: bf 08 00 00 00 00 00 00 r8 = r0 4: bf 71 00 00 00 00 00 00 r1 = r7 5: bf 62 00 00 00 00 00 00 r2 = r6 6: 85 10 00 00 02 00 00 00 call 2 0000000000000030: R_BPF_64_32 sec1 7: 0f 80 00 00 00 00 00 00 r0 += r8 8: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll 0000000000000040: R_BPF_64_64 global 10: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0) 11: 0f 10 00 00 00 00 00 00 r0 += r1 12: 95 00 00 00 00 00 00 00 exit Disassembly of section sec1: 0000000000000000 <gfunc>: 0: bf 20 00 00 00 00 00 00 r0 = r2 1: 2f 10 00 00 00 00 00 00 r0 *= r1 2: 95 00 00 00 00 00 00 00 exit 0000000000000018 <lfunc>: 3: bf 20 00 00 00 00 00 00 r0 = r2 4: 0f 10 00 00 00 00 00 00 r0 += r1 5: 95 00 00 00 00 00 00 00 exit The first relocation corresponds to ``gfunc(a, b)`` where ``gfunc`` has a value of 0, so the ``call`` instruction offset is ``(0 + 0)/8 - 1 = -1``. The second relocation corresponds to ``lfunc(a, b)`` where ``lfunc`` has a section offset ``0x18``, so the ``call`` instruction offset is ``(0 + 0x18)/8 - 1 = 2``. The third relocation corresponds to ld_imm64 of ``global``, which has a section offset ``0``. The following is an example to show how R_BPF_64_ABS64 could be generated:: int global() { return 0; } struct t { void *g; } gbl = { global }; Compiled with ``clang --target=bpf -O2 -g -c test.c``, we will see a relocation below in ``.data`` section with command ``llvm-readelf -r test.o``:: Relocation section '.rel.data' at offset 0x458 contains 1 entries: Offset Info Type Symbol's Value Symbol's Name 0000000000000000 0000000700000002 R_BPF_64_ABS64 0000000000000000 global The relocation says the first 8-byte of ``.data`` section should be filled with address of ``global`` variable. With ``llvm-readelf`` output, we can see that dwarf sections have a bunch of ``R_BPF_64_ABS32`` and ``R_BPF_64_ABS64`` relocations:: Relocation section '.rel.debug_info' at offset 0x468 contains 13 entries: Offset Info Type Symbol's Value Symbol's Name 0000000000000006 0000000300000003 R_BPF_64_ABS32 0000000000000000 .debug_abbrev 000000000000000c 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str 0000000000000012 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str 0000000000000016 0000000600000003 R_BPF_64_ABS32 0000000000000000 .debug_line 000000000000001a 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str 000000000000001e 0000000200000002 R_BPF_64_ABS64 0000000000000000 .text 000000000000002b 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str 0000000000000037 0000000800000002 R_BPF_64_ABS64 0000000000000000 gbl 0000000000000040 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str ...... The .BTF/.BTF.ext sections has R_BPF_64_NODYLD32 relocations:: Relocation section '.rel.BTF' at offset 0x538 contains 1 entries: Offset Info Type Symbol's Value Symbol's Name 0000000000000084 0000000800000004 R_BPF_64_NODYLD32 0000000000000000 gbl Relocation section '.rel.BTF.ext' at offset 0x548 contains 2 entries: Offset Info Type Symbol's Value Symbol's Name 000000000000002c 0000000200000004 R_BPF_64_NODYLD32 0000000000000000 .text 0000000000000040 0000000200000004 R_BPF_64_NODYLD32 0000000000000000 .text .. _btf-co-re-relocations: ================= CO-RE Relocations ================= From object file point of view CO-RE mechanism is implemented as a set of CO-RE specific relocation records. These relocation records are not related to ELF relocations and are encoded in .BTF.ext section. See :ref:`Documentation/bpf/btf.rst <BTF_Ext_Section>` for more information on .BTF.ext structure. CO-RE relocations are applied to BPF instructions to update immediate or offset fields of the instruction at load time with information relevant for target kernel. Field to patch is selected basing on the instruction class: * For BPF_ALU, BPF_ALU64, BPF_LD `immediate` field is patched; * For BPF_LDX, BPF_STX, BPF_ST `offset` field is patched; * BPF_JMP, BPF_JMP32 instructions **should not** be patched. Relocation kinds ================ There are several kinds of CO-RE relocations that could be split in three groups: * Field-based - patch instruction with field related information, e.g. change offset field of the BPF_LDX instruction to reflect offset of a specific structure field in the target kernel. * Type-based - patch instruction with type related information, e.g. change immediate field of the BPF_ALU move instruction to 0 or 1 to reflect if specific type is present in the target kernel. * Enum-based - patch instruction with enum related information, e.g. change immediate field of the BPF_LD_IMM64 instruction to reflect value of a specific enum literal in the target kernel. The complete list of relocation kinds is represented by the following enum: .. code-block:: c enum bpf_core_relo_kind { BPF_CORE_FIELD_BYTE_OFFSET = 0, /* field byte offset */ BPF_CORE_FIELD_BYTE_SIZE = 1, /* field size in bytes */ BPF_CORE_FIELD_EXISTS = 2, /* field existence in target kernel */ BPF_CORE_FIELD_SIGNED = 3, /* field signedness (0 - unsigned, 1 - signed) */ BPF_CORE_FIELD_LSHIFT_U64 = 4, /* bitfield-specific left bitshift */ BPF_CORE_FIELD_RSHIFT_U64 = 5, /* bitfield-specific right bitshift */ BPF_CORE_TYPE_ID_LOCAL = 6, /* type ID in local BPF object */ BPF_CORE_TYPE_ID_TARGET = 7, /* type ID in target kernel */ BPF_CORE_TYPE_EXISTS = 8, /* type existence in target kernel */ BPF_CORE_TYPE_SIZE = 9, /* type size in bytes */ BPF_CORE_ENUMVAL_EXISTS = 10, /* enum value existence in target kernel */ BPF_CORE_ENUMVAL_VALUE = 11, /* enum value integer value */ BPF_CORE_TYPE_MATCHES = 12, /* type match in target kernel */ }; Notes: * ``BPF_CORE_FIELD_LSHIFT_U64`` and ``BPF_CORE_FIELD_RSHIFT_U64`` are supposed to be used to read bitfield values using the following algorithm: .. code-block:: c // To read bitfield ``f`` from ``struct s`` is_signed = relo(s->f, BPF_CORE_FIELD_SIGNED) off = relo(s->f, BPF_CORE_FIELD_BYTE_OFFSET) sz = relo(s->f, BPF_CORE_FIELD_BYTE_SIZE) l = relo(s->f, BPF_CORE_FIELD_LSHIFT_U64) r = relo(s->f, BPF_CORE_FIELD_RSHIFT_U64) // define ``v`` as signed or unsigned integer of size ``sz`` v = *({s|u}<sz> *)((void *)s + off) v <<= l v >>= r * The ``BPF_CORE_TYPE_MATCHES`` queries matching relation, defined as follows: * for integers: types match if size and signedness match; * for arrays & pointers: target types are recursively matched; * for structs & unions: * local members need to exist in target with the same name; * for each member we recursively check match unless it is already behind a pointer, in which case we only check matching names and compatible kind; * for enums: * local variants have to have a match in target by symbolic name (but not numeric value); * size has to match (but enum may match enum64 and vice versa); * for function pointers: * number and position of arguments in local type has to match target; * for each argument and the return value we recursively check match. CO-RE Relocation Record ======================= Relocation record is encoded as the following structure: .. code-block:: c struct bpf_core_relo { __u32 insn_off; __u32 type_id; __u32 access_str_off; enum bpf_core_relo_kind kind; }; * ``insn_off`` - instruction offset (in bytes) within a code section associated with this relocation; * ``type_id`` - BTF type ID of the "root" (containing) entity of a relocatable type or field; * ``access_str_off`` - offset into corresponding .BTF string section. String interpretation depends on specific relocation kind: * for field-based relocations, string encodes an accessed field using a sequence of field and array indices, separated by colon (:). It's conceptually very close to LLVM's `getelementptr <GEP_>`_ instruction's arguments for identifying offset to a field. For example, consider the following C code: .. code-block:: c struct sample { int a; int b; struct { int c[10]; }; } __attribute__((preserve_access_index)); struct sample *s; * Access to ``s[0].a`` would be encoded as ``0:0``: * ``0``: first element of ``s`` (as if ``s`` is an array); * ``0``: index of field ``a`` in ``struct sample``. * Access to ``s->a`` would be encoded as ``0:0`` as well. * Access to ``s->b`` would be encoded as ``0:1``: * ``0``: first element of ``s``; * ``1``: index of field ``b`` in ``struct sample``. * Access to ``s[1].c[5]`` would be encoded as ``1:2:0:5``: * ``1``: second element of ``s``; * ``2``: index of anonymous structure field in ``struct sample``; * ``0``: index of field ``c`` in anonymous structure; * ``5``: access to array element #5. * for type-based relocations, string is expected to be just "0"; * for enum value-based relocations, string contains an index of enum value within its enum type; * ``kind`` - one of ``enum bpf_core_relo_kind``. .. _GEP: https://llvm.org/docs/LangRef.html#getelementptr-instruction .. _btf_co_re_relocation_examples: CO-RE Relocation Examples ========================= For the following C code: .. code-block:: c struct foo { int a; int b; unsigned c:15; } __attribute__((preserve_access_index)); enum bar { U, V }; With the following BTF definitions: .. code-block:: ... [2] STRUCT 'foo' size=8 vlen=2 'a' type_id=3 bits_offset=0 'b' type_id=3 bits_offset=32 'c' type_id=4 bits_offset=64 bitfield_size=15 [3] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED [4] INT 'unsigned int' size=4 bits_offset=0 nr_bits=32 encoding=(none) ... [16] ENUM 'bar' encoding=UNSIGNED size=4 vlen=2 'U' val=0 'V' val=1 Field offset relocations are generated automatically when ``__attribute__((preserve_access_index))`` is used, for example: .. code-block:: c void alpha(struct foo *s, volatile unsigned long *g) { *g = s->a; s->a = 1; } 00 <alpha>: 0: r3 = *(s32 *)(r1 + 0x0) 00: CO-RE <byte_off> [2] struct foo::a (0:0) 1: *(u64 *)(r2 + 0x0) = r3 2: *(u32 *)(r1 + 0x0) = 0x1 10: CO-RE <byte_off> [2] struct foo::a (0:0) 3: exit All relocation kinds could be requested via built-in functions. E.g. field-based relocations: .. code-block:: c void bravo(struct foo *s, volatile unsigned long *g) { *g = __builtin_preserve_field_info(s->b, 0 /* field byte offset */); *g = __builtin_preserve_field_info(s->b, 1 /* field byte size */); *g = __builtin_preserve_field_info(s->b, 2 /* field existence */); *g = __builtin_preserve_field_info(s->b, 3 /* field signedness */); *g = __builtin_preserve_field_info(s->c, 4 /* bitfield left shift */); *g = __builtin_preserve_field_info(s->c, 5 /* bitfield right shift */); } 20 <bravo>: 4: r1 = 0x4 20: CO-RE <byte_off> [2] struct foo::b (0:1) 5: *(u64 *)(r2 + 0x0) = r1 6: r1 = 0x4 30: CO-RE <byte_sz> [2] struct foo::b (0:1) 7: *(u64 *)(r2 + 0x0) = r1 8: r1 = 0x1 40: CO-RE <field_exists> [2] struct foo::b (0:1) 9: *(u64 *)(r2 + 0x0) = r1 10: r1 = 0x1 50: CO-RE <signed> [2] struct foo::b (0:1) 11: *(u64 *)(r2 + 0x0) = r1 12: r1 = 0x31 60: CO-RE <lshift_u64> [2] struct foo::c (0:2) 13: *(u64 *)(r2 + 0x0) = r1 14: r1 = 0x31 70: CO-RE <rshift_u64> [2] struct foo::c (0:2) 15: *(u64 *)(r2 + 0x0) = r1 16: exit Type-based relocations: .. code-block:: c void charlie(struct foo *s, volatile unsigned long *g) { *g = __builtin_preserve_type_info(*s, 0 /* type existence */); *g = __builtin_preserve_type_info(*s, 1 /* type size */); *g = __builtin_preserve_type_info(*s, 2 /* type matches */); *g = __builtin_btf_type_id(*s, 0 /* type id in this object file */); *g = __builtin_btf_type_id(*s, 1 /* type id in target kernel */); } 88 <charlie>: 17: r1 = 0x1 88: CO-RE <type_exists> [2] struct foo 18: *(u64 *)(r2 + 0x0) = r1 19: r1 = 0xc 98: CO-RE <type_size> [2] struct foo 20: *(u64 *)(r2 + 0x0) = r1 21: r1 = 0x1 a8: CO-RE <type_matches> [2] struct foo 22: *(u64 *)(r2 + 0x0) = r1 23: r1 = 0x2 ll b8: CO-RE <local_type_id> [2] struct foo 25: *(u64 *)(r2 + 0x0) = r1 26: r1 = 0x2 ll d0: CO-RE <target_type_id> [2] struct foo 28: *(u64 *)(r2 + 0x0) = r1 29: exit Enum-based relocations: .. code-block:: c void delta(struct foo *s, volatile unsigned long *g) { *g = __builtin_preserve_enum_value(*(enum bar *)U, 0 /* enum literal existence */); *g = __builtin_preserve_enum_value(*(enum bar *)V, 1 /* enum literal value */); } f0 <delta>: 30: r1 = 0x1 ll f0: CO-RE <enumval_exists> [16] enum bar::U = 0 32: *(u64 *)(r2 + 0x0) = r1 33: r1 = 0x1 ll 108: CO-RE <enumval_value> [16] enum bar::V = 1 35: *(u64 *)(r2 + 0x0) = r1 36: exit |