Documentation / driver-api / thermal / sysfs-api.rst


Based on kernel version 6.8. Page generated on 2024-03-11 21:26 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
===================================
Generic Thermal Sysfs driver How To
===================================

Written by Sujith Thomas <sujith.thomas@intel.com>, Zhang Rui <rui.zhang@intel.com>

Updated: 2 January 2008

Copyright (c)  2008 Intel Corporation


0. Introduction
===============

The generic thermal sysfs provides a set of interfaces for thermal zone
devices (sensors) and thermal cooling devices (fan, processor...) to register
with the thermal management solution and to be a part of it.

This how-to focuses on enabling new thermal zone and cooling devices to
participate in thermal management.
This solution is platform independent and any type of thermal zone devices
and cooling devices should be able to make use of the infrastructure.

The main task of the thermal sysfs driver is to expose thermal zone attributes
as well as cooling device attributes to the user space.
An intelligent thermal management application can make decisions based on
inputs from thermal zone attributes (the current temperature and trip point
temperature) and throttle appropriate devices.

- `[0-*]`	denotes any positive number starting from 0
- `[1-*]`	denotes any positive number starting from 1

1. thermal sysfs driver interface functions
===========================================

1.1 thermal zone device interface
---------------------------------

    ::

	struct thermal_zone_device
	*thermal_zone_device_register(char *type,
				      int trips, int mask, void *devdata,
				      struct thermal_zone_device_ops *ops,
				      const struct thermal_zone_params *tzp,
				      int passive_delay, int polling_delay))

    This interface function adds a new thermal zone device (sensor) to
    /sys/class/thermal folder as `thermal_zone[0-*]`. It tries to bind all the
    thermal cooling devices registered at the same time.

    type:
	the thermal zone type.
    trips:
	the total number of trip points this thermal zone supports.
    mask:
	Bit string: If 'n'th bit is set, then trip point 'n' is writable.
    devdata:
	device private data
    ops:
	thermal zone device call-backs.

	.bind:
		bind the thermal zone device with a thermal cooling device.
	.unbind:
		unbind the thermal zone device with a thermal cooling device.
	.get_temp:
		get the current temperature of the thermal zone.
	.set_trips:
		    set the trip points window. Whenever the current temperature
		    is updated, the trip points immediately below and above the
		    current temperature are found.
	.get_mode:
		   get the current mode (enabled/disabled) of the thermal zone.

			- "enabled" means the kernel thermal management is
			  enabled.
			- "disabled" will prevent kernel thermal driver action
			  upon trip points so that user applications can take
			  charge of thermal management.
	.set_mode:
		set the mode (enabled/disabled) of the thermal zone.
	.get_trip_type:
		get the type of certain trip point.
	.get_trip_temp:
			get the temperature above which the certain trip point
			will be fired.
	.set_emul_temp:
			set the emulation temperature which helps in debugging
			different threshold temperature points.
    tzp:
	thermal zone platform parameters.
    passive_delay:
	number of milliseconds to wait between polls when
	performing passive cooling.
    polling_delay:
	number of milliseconds to wait between polls when checking
	whether trip points have been crossed (0 for interrupt driven systems).

    ::

	void thermal_zone_device_unregister(struct thermal_zone_device *tz)

    This interface function removes the thermal zone device.
    It deletes the corresponding entry from /sys/class/thermal folder and
    unbinds all the thermal cooling devices it uses.

	::

	   struct thermal_zone_device
	   *thermal_zone_of_sensor_register(struct device *dev, int sensor_id,
				void *data,
				const struct thermal_zone_of_device_ops *ops)

	This interface adds a new sensor to a DT thermal zone.
	This function will search the list of thermal zones described in
	device tree and look for the zone that refer to the sensor device
	pointed by dev->of_node as temperature providers. For the zone
	pointing to the sensor node, the sensor will be added to the DT
	thermal zone device.

	The parameters for this interface are:

	dev:
			Device node of sensor containing valid node pointer in
			dev->of_node.
	sensor_id:
			a sensor identifier, in case the sensor IP has more
			than one sensors
	data:
			a private pointer (owned by the caller) that will be
			passed back, when a temperature reading is needed.
	ops:
			`struct thermal_zone_of_device_ops *`.

			==============  =======================================
			get_temp	a pointer to a function that reads the
					sensor temperature. This is mandatory
					callback provided by sensor driver.
			set_trips	a pointer to a function that sets a
					temperature window. When this window is
					left the driver must inform the thermal
					core via thermal_zone_device_update.
			get_trend 	a pointer to a function that reads the
					sensor temperature trend.
			set_emul_temp	a pointer to a function that sets
					sensor emulated temperature.
			==============  =======================================

	The thermal zone temperature is provided by the get_temp() function
	pointer of thermal_zone_of_device_ops. When called, it will
	have the private pointer @data back.

	It returns error pointer if fails otherwise valid thermal zone device
	handle. Caller should check the return handle with IS_ERR() for finding
	whether success or not.

	::

	    void thermal_zone_of_sensor_unregister(struct device *dev,
						   struct thermal_zone_device *tzd)

	This interface unregisters a sensor from a DT thermal zone which was
	successfully added by interface thermal_zone_of_sensor_register().
	This function removes the sensor callbacks and private data from the
	thermal zone device registered with thermal_zone_of_sensor_register()
	interface. It will also silent the zone by remove the .get_temp() and
	get_trend() thermal zone device callbacks.

	::

	  struct thermal_zone_device
	  *devm_thermal_zone_of_sensor_register(struct device *dev,
				int sensor_id,
				void *data,
				const struct thermal_zone_of_device_ops *ops)

	This interface is resource managed version of
	thermal_zone_of_sensor_register().

	All details of thermal_zone_of_sensor_register() described in
	section 1.1.3 is applicable here.

	The benefit of using this interface to register sensor is that it
	is not require to explicitly call thermal_zone_of_sensor_unregister()
	in error path or during driver unbinding as this is done by driver
	resource manager.

	::

		void devm_thermal_zone_of_sensor_unregister(struct device *dev,
						struct thermal_zone_device *tzd)

	This interface is resource managed version of
	thermal_zone_of_sensor_unregister().
	All details of thermal_zone_of_sensor_unregister() described in
	section 1.1.4 is applicable here.
	Normally this function will not need to be called and the resource
	management code will ensure that the resource is freed.

	::

		int thermal_zone_get_slope(struct thermal_zone_device *tz)

	This interface is used to read the slope attribute value
	for the thermal zone device, which might be useful for platform
	drivers for temperature calculations.

	::

		int thermal_zone_get_offset(struct thermal_zone_device *tz)

	This interface is used to read the offset attribute value
	for the thermal zone device, which might be useful for platform
	drivers for temperature calculations.

1.2 thermal cooling device interface
------------------------------------


    ::

	struct thermal_cooling_device
	*thermal_cooling_device_register(char *name,
			void *devdata, struct thermal_cooling_device_ops *)

    This interface function adds a new thermal cooling device (fan/processor/...)
    to /sys/class/thermal/ folder as `cooling_device[0-*]`. It tries to bind itself
    to all the thermal zone devices registered at the same time.

    name:
	the cooling device name.
    devdata:
	device private data.
    ops:
	thermal cooling devices call-backs.

	.get_max_state:
		get the Maximum throttle state of the cooling device.
	.get_cur_state:
		get the Currently requested throttle state of the
		cooling device.
	.set_cur_state:
		set the Current throttle state of the cooling device.

    ::

	void thermal_cooling_device_unregister(struct thermal_cooling_device *cdev)

    This interface function removes the thermal cooling device.
    It deletes the corresponding entry from /sys/class/thermal folder and
    unbinds itself from all the thermal zone devices using it.

1.3 interface for binding a thermal zone device with a thermal cooling device
-----------------------------------------------------------------------------

    ::

	int thermal_zone_bind_cooling_device(struct thermal_zone_device *tz,
		int trip, struct thermal_cooling_device *cdev,
		unsigned long upper, unsigned long lower, unsigned int weight);

    This interface function binds a thermal cooling device to a particular trip
    point of a thermal zone device.

    This function is usually called in the thermal zone device .bind callback.

    tz:
	  the thermal zone device
    cdev:
	  thermal cooling device
    trip:
	  indicates which trip point in this thermal zone the cooling device
	  is associated with.
    upper:
	  the Maximum cooling state for this trip point.
	  THERMAL_NO_LIMIT means no upper limit,
	  and the cooling device can be in max_state.
    lower:
	  the Minimum cooling state can be used for this trip point.
	  THERMAL_NO_LIMIT means no lower limit,
	  and the cooling device can be in cooling state 0.
    weight:
	  the influence of this cooling device in this thermal
	  zone.  See 1.4.1 below for more information.

    ::

	int thermal_zone_unbind_cooling_device(struct thermal_zone_device *tz,
				int trip, struct thermal_cooling_device *cdev);

    This interface function unbinds a thermal cooling device from a particular
    trip point of a thermal zone device. This function is usually called in
    the thermal zone device .unbind callback.

    tz:
	the thermal zone device
    cdev:
	thermal cooling device
    trip:
	indicates which trip point in this thermal zone the cooling device
	is associated with.

1.4 Thermal Zone Parameters
---------------------------

    ::

	struct thermal_zone_params

    This structure defines the platform level parameters for a thermal zone.
    This data, for each thermal zone should come from the platform layer.
    This is an optional feature where some platforms can choose not to
    provide this data.

    .governor_name:
	       Name of the thermal governor used for this zone
    .no_hwmon:
	       a boolean to indicate if the thermal to hwmon sysfs interface
	       is required. when no_hwmon == false, a hwmon sysfs interface
	       will be created. when no_hwmon == true, nothing will be done.
	       In case the thermal_zone_params is NULL, the hwmon interface
	       will be created (for backward compatibility).

2. sysfs attributes structure
=============================

==	================
RO	read only value
WO	write only value
RW	read/write value
==	================

Thermal sysfs attributes will be represented under /sys/class/thermal.
Hwmon sysfs I/F extension is also available under /sys/class/hwmon
if hwmon is compiled in or built as a module.

Thermal zone device sys I/F, created once it's registered::

  /sys/class/thermal/thermal_zone[0-*]:
    |---type:			Type of the thermal zone
    |---temp:			Current temperature
    |---mode:			Working mode of the thermal zone
    |---policy:			Thermal governor used for this zone
    |---available_policies:	Available thermal governors for this zone
    |---trip_point_[0-*]_temp:	Trip point temperature
    |---trip_point_[0-*]_type:	Trip point type
    |---trip_point_[0-*]_hyst:	Hysteresis value for this trip point
    |---emul_temp:		Emulated temperature set node
    |---sustainable_power:      Sustainable dissipatable power
    |---k_po:                   Proportional term during temperature overshoot
    |---k_pu:                   Proportional term during temperature undershoot
    |---k_i:                    PID's integral term in the power allocator gov
    |---k_d:                    PID's derivative term in the power allocator
    |---integral_cutoff:        Offset above which errors are accumulated
    |---slope:                  Slope constant applied as linear extrapolation
    |---offset:                 Offset constant applied as linear extrapolation

Thermal cooling device sys I/F, created once it's registered::

  /sys/class/thermal/cooling_device[0-*]:
    |---type:			Type of the cooling device(processor/fan/...)
    |---max_state:		Maximum cooling state of the cooling device
    |---cur_state:		Current cooling state of the cooling device
    |---stats:			Directory containing cooling device's statistics
    |---stats/reset:		Writing any value resets the statistics
    |---stats/time_in_state_ms:	Time (msec) spent in various cooling states
    |---stats/total_trans:	Total number of times cooling state is changed
    |---stats/trans_table:	Cooling state transition table


Then next two dynamic attributes are created/removed in pairs. They represent
the relationship between a thermal zone and its associated cooling device.
They are created/removed for each successful execution of
thermal_zone_bind_cooling_device/thermal_zone_unbind_cooling_device.

::

  /sys/class/thermal/thermal_zone[0-*]:
    |---cdev[0-*]:		[0-*]th cooling device in current thermal zone
    |---cdev[0-*]_trip_point:	Trip point that cdev[0-*] is associated with
    |---cdev[0-*]_weight:       Influence of the cooling device in
				this thermal zone

Besides the thermal zone device sysfs I/F and cooling device sysfs I/F,
the generic thermal driver also creates a hwmon sysfs I/F for each _type_
of thermal zone device. E.g. the generic thermal driver registers one hwmon
class device and build the associated hwmon sysfs I/F for all the registered
ACPI thermal zones.

Please read Documentation/ABI/testing/sysfs-class-thermal for thermal
zone and cooling device attribute details.

::

  /sys/class/hwmon/hwmon[0-*]:
    |---name:			The type of the thermal zone devices
    |---temp[1-*]_input:	The current temperature of thermal zone [1-*]
    |---temp[1-*]_critical:	The critical trip point of thermal zone [1-*]

Please read Documentation/hwmon/sysfs-interface.rst for additional information.

3. A simple implementation
==========================

ACPI thermal zone may support multiple trip points like critical, hot,
passive, active. If an ACPI thermal zone supports critical, passive,
active[0] and active[1] at the same time, it may register itself as a
thermal_zone_device (thermal_zone1) with 4 trip points in all.
It has one processor and one fan, which are both registered as
thermal_cooling_device. Both are considered to have the same
effectiveness in cooling the thermal zone.

If the processor is listed in _PSL method, and the fan is listed in _AL0
method, the sys I/F structure will be built like this::

 /sys/class/thermal:
  |thermal_zone1:
    |---type:			acpitz
    |---temp:			37000
    |---mode:			enabled
    |---policy:			step_wise
    |---available_policies:	step_wise fair_share
    |---trip_point_0_temp:	100000
    |---trip_point_0_type:	critical
    |---trip_point_1_temp:	80000
    |---trip_point_1_type:	passive
    |---trip_point_2_temp:	70000
    |---trip_point_2_type:	active0
    |---trip_point_3_temp:	60000
    |---trip_point_3_type:	active1
    |---cdev0:			--->/sys/class/thermal/cooling_device0
    |---cdev0_trip_point:	1	/* cdev0 can be used for passive */
    |---cdev0_weight:           1024
    |---cdev1:			--->/sys/class/thermal/cooling_device3
    |---cdev1_trip_point:	2	/* cdev1 can be used for active[0]*/
    |---cdev1_weight:           1024

  |cooling_device0:
    |---type:			Processor
    |---max_state:		8
    |---cur_state:		0

  |cooling_device3:
    |---type:			Fan
    |---max_state:		2
    |---cur_state:		0

 /sys/class/hwmon:
  |hwmon0:
    |---name:			acpitz
    |---temp1_input:		37000
    |---temp1_crit:		100000

4. Export Symbol APIs
=====================

4.1. get_tz_trend
-----------------

This function returns the trend of a thermal zone, i.e the rate of change
of temperature of the thermal zone. Ideally, the thermal sensor drivers
are supposed to implement the callback. If they don't, the thermal
framework calculated the trend by comparing the previous and the current
temperature values.

4.2. get_thermal_instance
-------------------------

This function returns the thermal_instance corresponding to a given
{thermal_zone, cooling_device, trip_point} combination. Returns NULL
if such an instance does not exist.

4.3. thermal_cdev_update
------------------------

This function serves as an arbitrator to set the state of a cooling
device. It sets the cooling device to the deepest cooling state if
possible.

5. thermal_emergency_poweroff
=============================

On an event of critical trip temperature crossing the thermal framework
shuts down the system by calling hw_protection_shutdown(). The
hw_protection_shutdown() first attempts to perform an orderly shutdown
but accepts a delay after which it proceeds doing a forced power-off
or as last resort an emergency_restart.

The delay should be carefully profiled so as to give adequate time for
orderly poweroff.

If the delay is set to 0 emergency poweroff will not be supported. So a
carefully profiled non-zero positive value is a must for emergency
poweroff to be triggered.