About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog

Documentation / DocBook / mtdnand.tmpl


Based on kernel version 4.10.8. Page generated on 2017-04-01 14:43 EST.

1	<?xml version="1.0" encoding="UTF-8"?>
2	<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3		"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4	
5	<book id="MTD-NAND-Guide">
6	 <bookinfo>
7	  <title>MTD NAND Driver Programming Interface</title>
8	  
9	  <authorgroup>
10	   <author>
11	    <firstname>Thomas</firstname>
12	    <surname>Gleixner</surname>
13	    <affiliation>
14	     <address>
15	      <email>tglx@linutronix.de</email>
16	     </address>
17	    </affiliation>
18	   </author>
19	  </authorgroup>
20	
21	  <copyright>
22	   <year>2004</year>
23	   <holder>Thomas Gleixner</holder>
24	  </copyright>
25	
26	  <legalnotice>
27	   <para>
28	     This documentation is free software; you can redistribute
29	     it and/or modify it under the terms of the GNU General Public
30	     License version 2 as published by the Free Software Foundation.
31	   </para>
32	      
33	   <para>
34	     This program is distributed in the hope that it will be
35	     useful, but WITHOUT ANY WARRANTY; without even the implied
36	     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
37	     See the GNU General Public License for more details.
38	   </para>
39	      
40	   <para>
41	     You should have received a copy of the GNU General Public
42	     License along with this program; if not, write to the Free
43	     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
44	     MA 02111-1307 USA
45	   </para>
46	      
47	   <para>
48	     For more details see the file COPYING in the source
49	     distribution of Linux.
50	   </para>
51	  </legalnotice>
52	 </bookinfo>
53	
54	<toc></toc>
55	
56	  <chapter id="intro">
57	      <title>Introduction</title>
58	  <para>
59	  	The generic NAND driver supports almost all NAND and AG-AND based
60		chips and connects them to the Memory Technology Devices (MTD)
61		subsystem of the Linux Kernel.
62	  </para>
63	  <para>
64	  	This documentation is provided for developers who want to implement
65		board drivers or filesystem drivers suitable for NAND devices.
66	  </para>
67	  </chapter>
68	  
69	  <chapter id="bugs">
70	     <title>Known Bugs And Assumptions</title>
71	  <para>
72		None.	
73	  </para>
74	  </chapter>
75	
76	  <chapter id="dochints">
77	     <title>Documentation hints</title>
78	     <para>
79	     The function and structure docs are autogenerated. Each function and 
80	     struct member has a short description which is marked with an [XXX] identifier.
81	     The following chapters explain the meaning of those identifiers.
82	     </para>
83	     <sect1 id="Function_identifiers_XXX">
84		<title>Function identifiers [XXX]</title>
85	     	<para>
86		The functions are marked with [XXX] identifiers in the short
87		comment. The identifiers explain the usage and scope of the
88		functions. Following identifiers are used:
89	     	</para>
90		<itemizedlist>
91			<listitem><para>
92		  	[MTD Interface]</para><para>
93			These functions provide the interface to the MTD kernel API. 
94			They are not replaceable and provide functionality
95			which is complete hardware independent.
96			</para></listitem>
97			<listitem><para>
98		  	[NAND Interface]</para><para>
99			These functions are exported and provide the interface to the NAND kernel API. 
100			</para></listitem>
101			<listitem><para>
102		  	[GENERIC]</para><para>
103			Generic functions are not replaceable and provide functionality
104			which is complete hardware independent.
105			</para></listitem>
106			<listitem><para>
107		  	[DEFAULT]</para><para>
108			Default functions provide hardware related functionality which is suitable
109			for most of the implementations. These functions can be replaced by the
110			board driver if necessary. Those functions are called via pointers in the
111			NAND chip description structure. The board driver can set the functions which
112			should be replaced by board dependent functions before calling nand_scan().
113			If the function pointer is NULL on entry to nand_scan() then the pointer
114			is set to the default function which is suitable for the detected chip type.
115			</para></listitem>
116		</itemizedlist>
117	     </sect1>
118	     <sect1 id="Struct_member_identifiers_XXX">
119		<title>Struct member identifiers [XXX]</title>
120	     	<para>
121		The struct members are marked with [XXX] identifiers in the 
122		comment. The identifiers explain the usage and scope of the
123		members. Following identifiers are used:
124	     	</para>
125		<itemizedlist>
126			<listitem><para>
127		  	[INTERN]</para><para>
128			These members are for NAND driver internal use only and must not be
129			modified. Most of these values are calculated from the chip geometry
130			information which is evaluated during nand_scan().
131			</para></listitem>
132			<listitem><para>
133		  	[REPLACEABLE]</para><para>
134			Replaceable members hold hardware related functions which can be 
135			provided by the board driver. The board driver can set the functions which
136			should be replaced by board dependent functions before calling nand_scan().
137			If the function pointer is NULL on entry to nand_scan() then the pointer
138			is set to the default function which is suitable for the detected chip type.
139			</para></listitem>
140			<listitem><para>
141		  	[BOARDSPECIFIC]</para><para>
142			Board specific members hold hardware related information which must
143			be provided by the board driver. The board driver must set the function
144			pointers and datafields before calling nand_scan().
145			</para></listitem>
146			<listitem><para>
147		  	[OPTIONAL]</para><para>
148			Optional members can hold information relevant for the board driver. The
149			generic NAND driver code does not use this information.
150			</para></listitem>
151		</itemizedlist>
152	     </sect1>
153	  </chapter>   
154	
155	  <chapter id="basicboarddriver">
156	     	<title>Basic board driver</title>
157		<para>
158			For most boards it will be sufficient to provide just the
159			basic functions and fill out some really board dependent
160			members in the nand chip description structure.
161		</para>
162		<sect1 id="Basic_defines">
163			<title>Basic defines</title>
164			<para>
165				At least you have to provide a nand_chip structure
166				and a storage for the ioremap'ed chip address.
167				You can allocate the nand_chip structure using
168				kmalloc or you can allocate it statically.
169				The NAND chip structure embeds an mtd structure
170				which will be registered to the MTD subsystem.
171				You can extract a pointer to the mtd structure
172				from a nand_chip pointer using the nand_to_mtd()
173				helper.
174			</para>
175			<para>
176				Kmalloc based example
177			</para>
178			<programlisting>
179	static struct mtd_info *board_mtd;
180	static void __iomem *baseaddr;
181			</programlisting>
182			<para>
183				Static example
184			</para>
185			<programlisting>
186	static struct nand_chip board_chip;
187	static void __iomem *baseaddr;
188			</programlisting>
189		</sect1>
190		<sect1 id="Partition_defines">
191			<title>Partition defines</title>
192			<para>
193				If you want to divide your device into partitions, then
194				define a partitioning scheme suitable to your board.
195			</para>
196			<programlisting>
197	#define NUM_PARTITIONS 2
198	static struct mtd_partition partition_info[] = {
199		{ .name = "Flash partition 1",
200		  .offset =  0,
201		  .size =    8 * 1024 * 1024 },
202		{ .name = "Flash partition 2",
203		  .offset =  MTDPART_OFS_NEXT,
204		  .size =    MTDPART_SIZ_FULL },
205	};
206			</programlisting>
207		</sect1>
208		<sect1 id="Hardware_control_functions">
209			<title>Hardware control function</title>
210			<para>
211				The hardware control function provides access to the 
212				control pins of the NAND chip(s). 
213				The access can be done by GPIO pins or by address lines.
214				If you use address lines, make sure that the timing
215				requirements are met.
216			</para>
217			<para>
218				<emphasis>GPIO based example</emphasis>
219			</para>
220			<programlisting>
221	static void board_hwcontrol(struct mtd_info *mtd, int cmd)
222	{
223		switch(cmd){
224			case NAND_CTL_SETCLE: /* Set CLE pin high */ break;
225			case NAND_CTL_CLRCLE: /* Set CLE pin low */ break;
226			case NAND_CTL_SETALE: /* Set ALE pin high */ break;
227			case NAND_CTL_CLRALE: /* Set ALE pin low */ break;
228			case NAND_CTL_SETNCE: /* Set nCE pin low */ break;
229			case NAND_CTL_CLRNCE: /* Set nCE pin high */ break;
230		}
231	}
232			</programlisting>
233			<para>
234				<emphasis>Address lines based example.</emphasis> It's assumed that the
235				nCE pin is driven by a chip select decoder.
236			</para>
237			<programlisting>
238	static void board_hwcontrol(struct mtd_info *mtd, int cmd)
239	{
240		struct nand_chip *this = mtd_to_nand(mtd);
241		switch(cmd){
242			case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT;  break;
243			case NAND_CTL_CLRCLE: this->IO_ADDR_W &amp;= ~CLE_ADRR_BIT; break;
244			case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT;  break;
245			case NAND_CTL_CLRALE: this->IO_ADDR_W &amp;= ~ALE_ADRR_BIT; break;
246		}
247	}
248			</programlisting>
249		</sect1>
250		<sect1 id="Device_ready_function">
251			<title>Device ready function</title>
252			<para>
253				If the hardware interface has the ready busy pin of the NAND chip connected to a
254				GPIO or other accessible I/O pin, this function is used to read back the state of the
255				pin. The function has no arguments and should return 0, if the device is busy (R/B pin 
256				is low) and 1, if the device is ready (R/B pin is high).
257				If the hardware interface does not give access to the ready busy pin, then
258				the function must not be defined and the function pointer this->dev_ready is set to NULL.		
259			</para>
260		</sect1>
261		<sect1 id="Init_function">
262			<title>Init function</title>
263			<para>
264				The init function allocates memory and sets up all the board
265				specific parameters and function pointers. When everything
266				is set up nand_scan() is called. This function tries to
267				detect and identify then chip. If a chip is found all the
268				internal data fields are initialized accordingly.
269				The structure(s) have to be zeroed out first and then filled with the necessary
270				information about the device.
271			</para>
272			<programlisting>
273	static int __init board_init (void)
274	{
275		struct nand_chip *this;
276		int err = 0;
277	
278		/* Allocate memory for MTD device structure and private data */
279		this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
280		if (!this) {
281			printk ("Unable to allocate NAND MTD device structure.\n");
282			err = -ENOMEM;
283			goto out;
284		}
285	
286		board_mtd = nand_to_mtd(this);
287	
288		/* map physical address */
289		baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
290		if (!baseaddr) {
291			printk("Ioremap to access NAND chip failed\n");
292			err = -EIO;
293			goto out_mtd;
294		}
295	
296		/* Set address of NAND IO lines */
297		this->IO_ADDR_R = baseaddr;
298		this->IO_ADDR_W = baseaddr;
299		/* Reference hardware control function */
300		this->hwcontrol = board_hwcontrol;
301		/* Set command delay time, see datasheet for correct value */
302		this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;
303		/* Assign the device ready function, if available */
304		this->dev_ready = board_dev_ready;
305		this->eccmode = NAND_ECC_SOFT;
306	
307		/* Scan to find existence of the device */
308		if (nand_scan (board_mtd, 1)) {
309			err = -ENXIO;
310			goto out_ior;
311		}
312		
313		add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS);
314		goto out;
315	
316	out_ior:
317		iounmap(baseaddr);
318	out_mtd:
319		kfree (this);
320	out:
321		return err;
322	}
323	module_init(board_init);
324			</programlisting>
325		</sect1>
326		<sect1 id="Exit_function">
327			<title>Exit function</title>
328			<para>
329				The exit function is only necessary if the driver is
330				compiled as a module. It releases all resources which
331				are held by the chip driver and unregisters the partitions
332				in the MTD layer.
333			</para>
334			<programlisting>
335	#ifdef MODULE
336	static void __exit board_cleanup (void)
337	{
338		/* Release resources, unregister device */
339		nand_release (board_mtd);
340	
341		/* unmap physical address */
342		iounmap(baseaddr);
343		
344		/* Free the MTD device structure */
345		kfree (mtd_to_nand(board_mtd));
346	}
347	module_exit(board_cleanup);
348	#endif
349			</programlisting>
350		</sect1>
351	  </chapter>
352	
353	  <chapter id="boarddriversadvanced">
354	     	<title>Advanced board driver functions</title>
355		<para>
356			This chapter describes the advanced functionality of the NAND
357			driver. For a list of functions which can be overridden by the board
358			driver see the documentation of the nand_chip structure.
359		</para>
360		<sect1 id="Multiple_chip_control">
361			<title>Multiple chip control</title>
362			<para>
363				The nand driver can control chip arrays. Therefore the
364				board driver must provide an own select_chip function. This
365				function must (de)select the requested chip.
366				The function pointer in the nand_chip structure must
367				be set before calling nand_scan(). The maxchip parameter
368				of nand_scan() defines the maximum number of chips to
369				scan for. Make sure that the select_chip function can
370				handle the requested number of chips.
371			</para>
372			<para>
373				The nand driver concatenates the chips to one virtual
374				chip and provides this virtual chip to the MTD layer.
375			</para>
376			<para>
377				<emphasis>Note: The driver can only handle linear chip arrays
378				of equally sized chips. There is no support for
379				parallel arrays which extend the buswidth.</emphasis>
380			</para>
381			<para>
382				<emphasis>GPIO based example</emphasis>
383			</para>
384			<programlisting>
385	static void board_select_chip (struct mtd_info *mtd, int chip)
386	{
387		/* Deselect all chips, set all nCE pins high */
388		GPIO(BOARD_NAND_NCE) |= 0xff;	
389		if (chip >= 0)
390			GPIO(BOARD_NAND_NCE) &amp;= ~ (1 &lt;&lt; chip);
391	}
392			</programlisting>
393			<para>
394				<emphasis>Address lines based example.</emphasis>
395				Its assumed that the nCE pins are connected to an
396				address decoder.
397			</para>
398			<programlisting>
399	static void board_select_chip (struct mtd_info *mtd, int chip)
400	{
401		struct nand_chip *this = mtd_to_nand(mtd);
402		
403		/* Deselect all chips */
404		this->IO_ADDR_R &amp;= ~BOARD_NAND_ADDR_MASK;
405		this->IO_ADDR_W &amp;= ~BOARD_NAND_ADDR_MASK;
406		switch (chip) {
407		case 0:
408			this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0;
409			this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0;
410			break;
411		....	
412		case n:
413			this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn;
414			this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn;
415			break;
416		}	
417	}
418			</programlisting>
419		</sect1>
420		<sect1 id="Hardware_ECC_support">
421			<title>Hardware ECC support</title>
422			<sect2 id="Functions_and_constants">
423				<title>Functions and constants</title>
424				<para>
425					The nand driver supports three different types of
426					hardware ECC.
427					<itemizedlist>
428					<listitem><para>NAND_ECC_HW3_256</para><para>
429					Hardware ECC generator providing 3 bytes ECC per
430					256 byte.
431					</para>	</listitem>
432					<listitem><para>NAND_ECC_HW3_512</para><para>
433					Hardware ECC generator providing 3 bytes ECC per
434					512 byte.
435					</para>	</listitem>
436					<listitem><para>NAND_ECC_HW6_512</para><para>
437					Hardware ECC generator providing 6 bytes ECC per
438					512 byte.
439					</para>	</listitem>
440					<listitem><para>NAND_ECC_HW8_512</para><para>
441					Hardware ECC generator providing 6 bytes ECC per
442					512 byte.
443					</para>	</listitem>
444					</itemizedlist>
445					If your hardware generator has a different functionality
446					add it at the appropriate place in nand_base.c
447				</para>
448				<para>
449					The board driver must provide following functions:
450					<itemizedlist>
451					<listitem><para>enable_hwecc</para><para>
452					This function is called before reading / writing to
453					the chip. Reset or initialize the hardware generator
454					in this function. The function is called with an
455					argument which let you distinguish between read 
456					and write operations.
457					</para>	</listitem>
458					<listitem><para>calculate_ecc</para><para>
459					This function is called after read / write from / to
460					the chip. Transfer the ECC from the hardware to
461					the buffer. If the option NAND_HWECC_SYNDROME is set
462					then the function is only called on write. See below.
463					</para>	</listitem>
464					<listitem><para>correct_data</para><para>
465					In case of an ECC error this function is called for
466					error detection and correction. Return 1 respectively 2
467					in case the error can be corrected. If the error is
468					not correctable return -1. If your hardware generator
469					matches the default algorithm of the nand_ecc software
470					generator then use the correction function provided
471					by nand_ecc instead of implementing duplicated code.
472					</para>	</listitem>
473					</itemizedlist>
474				</para>
475			</sect2>
476			<sect2 id="Hardware_ECC_with_syndrome_calculation">
477			<title>Hardware ECC with syndrome calculation</title>
478				<para>
479					Many hardware ECC implementations provide Reed-Solomon
480					codes and calculate an error syndrome on read. The syndrome
481					must be converted to a standard Reed-Solomon syndrome
482					before calling the error correction code in the generic
483					Reed-Solomon library.
484				</para>
485				<para>
486					The ECC bytes must be placed immediately after the data
487					bytes in order to make the syndrome generator work. This
488					is contrary to the usual layout used by software ECC. The
489					separation of data and out of band area is not longer
490					possible. The nand driver code handles this layout and
491					the remaining free bytes in the oob area are managed by 
492					the autoplacement code. Provide a matching oob-layout
493					in this case. See rts_from4.c and diskonchip.c for 
494					implementation reference. In those cases we must also
495					use bad block tables on FLASH, because the ECC layout is
496					interfering with the bad block marker positions.
497					See bad block table support for details.
498				</para>
499			</sect2>
500		</sect1>
501		<sect1 id="Bad_Block_table_support">
502			<title>Bad block table support</title>
503			<para>
504				Most NAND chips mark the bad blocks at a defined
505				position in the spare area. Those blocks must 
506				not be erased under any circumstances as the bad 
507				block information would be lost.
508				It is possible to check the bad block mark each
509				time when the blocks are accessed by reading the
510				spare area of the first page in the block. This
511				is time consuming so a bad block table is used.
512			</para>
513			<para>
514				The nand driver supports various types of bad block
515				tables.
516				<itemizedlist>
517				<listitem><para>Per device</para><para>
518				The bad block table contains all bad block information
519				of the device which can consist of multiple chips.
520				</para>	</listitem>
521				<listitem><para>Per chip</para><para>
522				A bad block table is used per chip and contains the
523				bad block information for this particular chip.
524				</para>	</listitem>
525				<listitem><para>Fixed offset</para><para>
526				The bad block table is located at a fixed offset
527				in the chip (device). This applies to various
528				DiskOnChip devices.
529				</para>	</listitem>
530				<listitem><para>Automatic placed</para><para>
531				The bad block table is automatically placed and
532				detected either at the end or at the beginning
533				of a chip (device)
534				</para>	</listitem>
535				<listitem><para>Mirrored tables</para><para>
536				The bad block table is mirrored on the chip (device) to
537				allow updates of the bad block table without data loss.
538				</para>	</listitem>
539				</itemizedlist>
540			</para>
541			<para>	
542				nand_scan() calls the function nand_default_bbt(). 
543				nand_default_bbt() selects appropriate default
544				bad block table descriptors depending on the chip information
545				which was retrieved by nand_scan().
546			</para>
547			<para>
548				The standard policy is scanning the device for bad 
549				blocks and build a ram based bad block table which
550				allows faster access than always checking the
551				bad block information on the flash chip itself.
552			</para>
553			<sect2 id="Flash_based_tables">
554				<title>Flash based tables</title>
555				<para>
556					It may be desired or necessary to keep a bad block table in FLASH.
557					For AG-AND chips this is mandatory, as they have no factory marked
558					bad blocks. They have factory marked good blocks. The marker pattern
559					is erased when the block is erased to be reused. So in case of
560					powerloss before writing the pattern back to the chip this block 
561					would be lost and added to the bad blocks. Therefore we scan the 
562					chip(s) when we detect them the first time for good blocks and 
563					store this information in a bad block table before erasing any 
564					of the blocks.
565				</para>
566				<para>
567					The blocks in which the tables are stored are protected against
568					accidental access by marking them bad in the memory bad block
569					table. The bad block table management functions are allowed
570					to circumvent this protection.
571				</para>
572				<para>
573					The simplest way to activate the FLASH based bad block table support 
574					is to set the option NAND_BBT_USE_FLASH in the bbt_option field of
575					the nand chip structure before calling nand_scan(). For AG-AND
576					chips is this done by default.
577					This activates the default FLASH based bad block table functionality 
578					of the NAND driver. The default bad block table options are
579					<itemizedlist>
580					<listitem><para>Store bad block table per chip</para></listitem>
581					<listitem><para>Use 2 bits per block</para></listitem>
582					<listitem><para>Automatic placement at the end of the chip</para></listitem>
583					<listitem><para>Use mirrored tables with version numbers</para></listitem>
584					<listitem><para>Reserve 4 blocks at the end of the chip</para></listitem>
585					</itemizedlist>
586				</para>
587			</sect2>
588			<sect2 id="User_defined_tables">
589				<title>User defined tables</title>
590				<para>
591					User defined tables are created by filling out a 
592					nand_bbt_descr structure and storing the pointer in the
593					nand_chip structure member bbt_td before calling nand_scan(). 
594					If a mirror table is necessary a second structure must be
595					created and a pointer to this structure must be stored
596					in bbt_md inside the nand_chip structure. If the bbt_md 
597					member is set to NULL then only the main table is used
598					and no scan for the mirrored table is performed.
599				</para>
600				<para>
601					The most important field in the nand_bbt_descr structure
602					is the options field. The options define most of the 
603					table properties. Use the predefined constants from
604					nand.h to define the options.
605					<itemizedlist>
606					<listitem><para>Number of bits per block</para>
607					<para>The supported number of bits is 1, 2, 4, 8.</para></listitem>
608					<listitem><para>Table per chip</para>
609					<para>Setting the constant NAND_BBT_PERCHIP selects that
610					a bad block table is managed for each chip in a chip array.
611					If this option is not set then a per device bad block table
612					is used.</para></listitem>
613					<listitem><para>Table location is absolute</para>
614					<para>Use the option constant NAND_BBT_ABSPAGE and
615					define the absolute page number where the bad block
616					table starts in the field pages. If you have selected bad block
617					tables per chip and you have a multi chip array then the start page
618					must be given for each chip in the chip array. Note: there is no scan
619					for a table ident pattern performed, so the fields 
620					pattern, veroffs, offs, len can be left uninitialized</para></listitem>
621					<listitem><para>Table location is automatically detected</para>
622					<para>The table can either be located in the first or the last good
623					blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place
624					the bad block table at the end of the chip (device). The
625					bad block tables are marked and identified by a pattern which
626					is stored in the spare area of the first page in the block which
627					holds the bad block table. Store a pointer to the pattern  
628					in the pattern field. Further the length of the pattern has to be 
629					stored in len and the offset in the spare area must be given
630					in the offs member of the nand_bbt_descr structure. For mirrored
631					bad block tables different patterns are mandatory.</para></listitem>
632					<listitem><para>Table creation</para>
633					<para>Set the option NAND_BBT_CREATE to enable the table creation
634					if no table can be found during the scan. Usually this is done only 
635					once if a new chip is found. </para></listitem>
636					<listitem><para>Table write support</para>
637					<para>Set the option NAND_BBT_WRITE to enable the table write support.
638					This allows the update of the bad block table(s) in case a block has
639					to be marked bad due to wear. The MTD interface function block_markbad
640					is calling the update function of the bad block table. If the write
641					support is enabled then the table is updated on FLASH.</para>
642					<para>
643					Note: Write support should only be enabled for mirrored tables with
644					version control.
645					</para></listitem>
646					<listitem><para>Table version control</para>
647					<para>Set the option NAND_BBT_VERSION to enable the table version control.
648					It's highly recommended to enable this for mirrored tables with write
649					support. It makes sure that the risk of losing the bad block
650					table information is reduced to the loss of the information about the
651					one worn out block which should be marked bad. The version is stored in
652					4 consecutive bytes in the spare area of the device. The position of
653					the version number is defined by the member veroffs in the bad block table
654					descriptor.</para></listitem>
655					<listitem><para>Save block contents on write</para>
656					<para>
657					In case that the block which holds the bad block table does contain
658					other useful information, set the option NAND_BBT_SAVECONTENT. When
659					the bad block table is written then the whole block is read the bad
660					block table is updated and the block is erased and everything is 
661					written back. If this option is not set only the bad block table
662					is written and everything else in the block is ignored and erased.
663					</para></listitem>
664					<listitem><para>Number of reserved blocks</para>
665					<para>
666					For automatic placement some blocks must be reserved for
667					bad block table storage. The number of reserved blocks is defined 
668					in the maxblocks member of the bad block table description structure.
669					Reserving 4 blocks for mirrored tables should be a reasonable number. 
670					This also limits the number of blocks which are scanned for the bad
671					block table ident pattern.
672					</para></listitem>
673					</itemizedlist>
674				</para>
675			</sect2>
676		</sect1>
677		<sect1 id="Spare_area_placement">
678			<title>Spare area (auto)placement</title>
679			<para>
680				The nand driver implements different possibilities for
681				placement of filesystem data in the spare area, 
682				<itemizedlist>
683				<listitem><para>Placement defined by fs driver</para></listitem>
684				<listitem><para>Automatic placement</para></listitem>
685				</itemizedlist>
686				The default placement function is automatic placement. The
687				nand driver has built in default placement schemes for the
688				various chiptypes. If due to hardware ECC functionality the
689				default placement does not fit then the board driver can
690				provide a own placement scheme.
691			</para>
692			<para>
693				File system drivers can provide a own placement scheme which
694				is used instead of the default placement scheme.
695			</para>
696			<para>
697				Placement schemes are defined by a nand_oobinfo structure
698		     		<programlisting>
699	struct nand_oobinfo {
700		int	useecc;
701		int	eccbytes;
702		int	eccpos[24];
703		int	oobfree[8][2];
704	};
705		     		</programlisting>
706				<itemizedlist>
707				<listitem><para>useecc</para><para>
708					The useecc member controls the ecc and placement function. The header
709					file include/mtd/mtd-abi.h contains constants to select ecc and
710					placement. MTD_NANDECC_OFF switches off the ecc complete. This is
711					not recommended and available for testing and diagnosis only.
712					MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE
713					selects automatic placement.
714				</para></listitem>
715				<listitem><para>eccbytes</para><para>
716					The eccbytes member defines the number of ecc bytes per page.
717				</para></listitem>
718				<listitem><para>eccpos</para><para>
719					The eccpos array holds the byte offsets in the spare area where
720					the ecc codes are placed.
721				</para></listitem>
722				<listitem><para>oobfree</para><para>
723					The oobfree array defines the areas in the spare area which can be
724					used for automatic placement. The information is given in the format
725					{offset, size}. offset defines the start of the usable area, size the
726					length in bytes. More than one area can be defined. The list is terminated
727					by an {0, 0} entry.
728				</para></listitem>
729				</itemizedlist>
730			</para>
731			<sect2 id="Placement_defined_by_fs_driver">
732				<title>Placement defined by fs driver</title>
733				<para>
734					The calling function provides a pointer to a nand_oobinfo
735					structure which defines the ecc placement. For writes the
736					caller must provide a spare area buffer along with the
737					data buffer. The spare area buffer size is (number of pages) *
738					(size of spare area). For reads the buffer size is
739					(number of pages) * ((size of spare area) + (number of ecc
740					steps per page) * sizeof (int)). The driver stores the
741					result of the ecc check for each tuple in the spare buffer.
742					The storage sequence is 
743				</para>
744				<para>
745					&lt;spare data page 0&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
746				</para>
747				<para>
748					...
749				</para>
750				<para>
751					&lt;spare data page n&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
752				</para>
753				<para>
754					This is a legacy mode used by YAFFS1.
755				</para>
756				<para>
757					If the spare area buffer is NULL then only the ECC placement is
758					done according to the given scheme in the nand_oobinfo structure.
759				</para>
760			</sect2>
761			<sect2 id="Automatic_placement">
762				<title>Automatic placement</title>
763				<para>
764					Automatic placement uses the built in defaults to place the
765					ecc bytes in the spare area. If filesystem data have to be stored /
766					read into the spare area then the calling function must provide a
767					buffer. The buffer size per page is determined by the oobfree array in
768					the nand_oobinfo structure.
769				</para>
770				<para>
771					If the spare area buffer is NULL then only the ECC placement is
772					done according to the default builtin scheme.
773				</para>
774			</sect2>
775		</sect1>	
776		<sect1 id="Spare_area_autoplacement_default">
777			<title>Spare area autoplacement default schemes</title>
778			<sect2 id="pagesize_256">
779				<title>256 byte pagesize</title>
780	<informaltable><tgroup cols="3"><tbody>
781	<row>
782	<entry>Offset</entry>
783	<entry>Content</entry>
784	<entry>Comment</entry>
785	</row>
786	<row>
787	<entry>0x00</entry>
788	<entry>ECC byte 0</entry>
789	<entry>Error correction code byte 0</entry>
790	</row>
791	<row>
792	<entry>0x01</entry>
793	<entry>ECC byte 1</entry>
794	<entry>Error correction code byte 1</entry>
795	</row>
796	<row>
797	<entry>0x02</entry>
798	<entry>ECC byte 2</entry>
799	<entry>Error correction code byte 2</entry>
800	</row>
801	<row>
802	<entry>0x03</entry>
803	<entry>Autoplace 0</entry>
804	<entry></entry>
805	</row>
806	<row>
807	<entry>0x04</entry>
808	<entry>Autoplace 1</entry>
809	<entry></entry>
810	</row>
811	<row>
812	<entry>0x05</entry>
813	<entry>Bad block marker</entry>
814	<entry>If any bit in this byte is zero, then this block is bad.
815	This applies only to the first page in a block. In the remaining
816	pages this byte is reserved</entry>
817	</row>
818	<row>
819	<entry>0x06</entry>
820	<entry>Autoplace 2</entry>
821	<entry></entry>
822	</row>
823	<row>
824	<entry>0x07</entry>
825	<entry>Autoplace 3</entry>
826	<entry></entry>
827	</row>
828	</tbody></tgroup></informaltable>
829			</sect2>
830			<sect2 id="pagesize_512">
831				<title>512 byte pagesize</title>
832	<informaltable><tgroup cols="3"><tbody>
833	<row>
834	<entry>Offset</entry>
835	<entry>Content</entry>
836	<entry>Comment</entry>
837	</row>
838	<row>
839	<entry>0x00</entry>
840	<entry>ECC byte 0</entry>
841	<entry>Error correction code byte 0 of the lower 256 Byte data in
842	this page</entry>
843	</row>
844	<row>
845	<entry>0x01</entry>
846	<entry>ECC byte 1</entry>
847	<entry>Error correction code byte 1 of the lower 256 Bytes of data
848	in this page</entry>
849	</row>
850	<row>
851	<entry>0x02</entry>
852	<entry>ECC byte 2</entry>
853	<entry>Error correction code byte 2 of the lower 256 Bytes of data
854	in this page</entry>
855	</row>
856	<row>
857	<entry>0x03</entry>
858	<entry>ECC byte 3</entry>
859	<entry>Error correction code byte 0 of the upper 256 Bytes of data
860	in this page</entry>
861	</row>
862	<row>
863	<entry>0x04</entry>
864	<entry>reserved</entry>
865	<entry>reserved</entry>
866	</row>
867	<row>
868	<entry>0x05</entry>
869	<entry>Bad block marker</entry>
870	<entry>If any bit in this byte is zero, then this block is bad.
871	This applies only to the first page in a block. In the remaining
872	pages this byte is reserved</entry>
873	</row>
874	<row>
875	<entry>0x06</entry>
876	<entry>ECC byte 4</entry>
877	<entry>Error correction code byte 1 of the upper 256 Bytes of data
878	in this page</entry>
879	</row>
880	<row>
881	<entry>0x07</entry>
882	<entry>ECC byte 5</entry>
883	<entry>Error correction code byte 2 of the upper 256 Bytes of data
884	in this page</entry>
885	</row>
886	<row>
887	<entry>0x08 - 0x0F</entry>
888	<entry>Autoplace 0 - 7</entry>
889	<entry></entry>
890	</row>
891	</tbody></tgroup></informaltable>
892			</sect2>
893			<sect2 id="pagesize_2048">
894				<title>2048 byte pagesize</title>
895	<informaltable><tgroup cols="3"><tbody>
896	<row>
897	<entry>Offset</entry>
898	<entry>Content</entry>
899	<entry>Comment</entry>
900	</row>
901	<row>
902	<entry>0x00</entry>
903	<entry>Bad block marker</entry>
904	<entry>If any bit in this byte is zero, then this block is bad.
905	This applies only to the first page in a block. In the remaining
906	pages this byte is reserved</entry>
907	</row>
908	<row>
909	<entry>0x01</entry>
910	<entry>Reserved</entry>
911	<entry>Reserved</entry>
912	</row>
913	<row>
914	<entry>0x02-0x27</entry>
915	<entry>Autoplace 0 - 37</entry>
916	<entry></entry>
917	</row>
918	<row>
919	<entry>0x28</entry>
920	<entry>ECC byte 0</entry>
921	<entry>Error correction code byte 0 of the first 256 Byte data in
922	this page</entry>
923	</row>
924	<row>
925	<entry>0x29</entry>
926	<entry>ECC byte 1</entry>
927	<entry>Error correction code byte 1 of the first 256 Bytes of data
928	in this page</entry>
929	</row>
930	<row>
931	<entry>0x2A</entry>
932	<entry>ECC byte 2</entry>
933	<entry>Error correction code byte 2 of the first 256 Bytes data in
934	this page</entry>
935	</row>
936	<row>
937	<entry>0x2B</entry>
938	<entry>ECC byte 3</entry>
939	<entry>Error correction code byte 0 of the second 256 Bytes of data
940	in this page</entry>
941	</row>
942	<row>
943	<entry>0x2C</entry>
944	<entry>ECC byte 4</entry>
945	<entry>Error correction code byte 1 of the second 256 Bytes of data
946	in this page</entry>
947	</row>
948	<row>
949	<entry>0x2D</entry>
950	<entry>ECC byte 5</entry>
951	<entry>Error correction code byte 2 of the second 256 Bytes of data
952	in this page</entry>
953	</row>
954	<row>
955	<entry>0x2E</entry>
956	<entry>ECC byte 6</entry>
957	<entry>Error correction code byte 0 of the third 256 Bytes of data
958	in this page</entry>
959	</row>
960	<row>
961	<entry>0x2F</entry>
962	<entry>ECC byte 7</entry>
963	<entry>Error correction code byte 1 of the third 256 Bytes of data
964	in this page</entry>
965	</row>
966	<row>
967	<entry>0x30</entry>
968	<entry>ECC byte 8</entry>
969	<entry>Error correction code byte 2 of the third 256 Bytes of data
970	in this page</entry>
971	</row>
972	<row>
973	<entry>0x31</entry>
974	<entry>ECC byte 9</entry>
975	<entry>Error correction code byte 0 of the fourth 256 Bytes of data
976	in this page</entry>
977	</row>
978	<row>
979	<entry>0x32</entry>
980	<entry>ECC byte 10</entry>
981	<entry>Error correction code byte 1 of the fourth 256 Bytes of data
982	in this page</entry>
983	</row>
984	<row>
985	<entry>0x33</entry>
986	<entry>ECC byte 11</entry>
987	<entry>Error correction code byte 2 of the fourth 256 Bytes of data
988	in this page</entry>
989	</row>
990	<row>
991	<entry>0x34</entry>
992	<entry>ECC byte 12</entry>
993	<entry>Error correction code byte 0 of the fifth 256 Bytes of data
994	in this page</entry>
995	</row>
996	<row>
997	<entry>0x35</entry>
998	<entry>ECC byte 13</entry>
999	<entry>Error correction code byte 1 of the fifth 256 Bytes of data
1000	in this page</entry>
1001	</row>
1002	<row>
1003	<entry>0x36</entry>
1004	<entry>ECC byte 14</entry>
1005	<entry>Error correction code byte 2 of the fifth 256 Bytes of data
1006	in this page</entry>
1007	</row>
1008	<row>
1009	<entry>0x37</entry>
1010	<entry>ECC byte 15</entry>
1011	<entry>Error correction code byte 0 of the sixt 256 Bytes of data
1012	in this page</entry>
1013	</row>
1014	<row>
1015	<entry>0x38</entry>
1016	<entry>ECC byte 16</entry>
1017	<entry>Error correction code byte 1 of the sixt 256 Bytes of data
1018	in this page</entry>
1019	</row>
1020	<row>
1021	<entry>0x39</entry>
1022	<entry>ECC byte 17</entry>
1023	<entry>Error correction code byte 2 of the sixt 256 Bytes of data
1024	in this page</entry>
1025	</row>
1026	<row>
1027	<entry>0x3A</entry>
1028	<entry>ECC byte 18</entry>
1029	<entry>Error correction code byte 0 of the seventh 256 Bytes of
1030	data in this page</entry>
1031	</row>
1032	<row>
1033	<entry>0x3B</entry>
1034	<entry>ECC byte 19</entry>
1035	<entry>Error correction code byte 1 of the seventh 256 Bytes of
1036	data in this page</entry>
1037	</row>
1038	<row>
1039	<entry>0x3C</entry>
1040	<entry>ECC byte 20</entry>
1041	<entry>Error correction code byte 2 of the seventh 256 Bytes of
1042	data in this page</entry>
1043	</row>
1044	<row>
1045	<entry>0x3D</entry>
1046	<entry>ECC byte 21</entry>
1047	<entry>Error correction code byte 0 of the eighth 256 Bytes of data
1048	in this page</entry>
1049	</row>
1050	<row>
1051	<entry>0x3E</entry>
1052	<entry>ECC byte 22</entry>
1053	<entry>Error correction code byte 1 of the eighth 256 Bytes of data
1054	in this page</entry>
1055	</row>
1056	<row>
1057	<entry>0x3F</entry>
1058	<entry>ECC byte 23</entry>
1059	<entry>Error correction code byte 2 of the eighth 256 Bytes of data
1060	in this page</entry>
1061	</row>
1062	</tbody></tgroup></informaltable>
1063			</sect2>
1064	     	</sect1>
1065	  </chapter>
1066	
1067	  <chapter id="filesystems">
1068	     	<title>Filesystem support</title>
1069		<para>
1070			The NAND driver provides all necessary functions for a
1071			filesystem via the MTD interface.
1072		</para>
1073		<para>
1074			Filesystems must be aware of the NAND peculiarities and
1075			restrictions. One major restrictions of NAND Flash is, that you cannot 
1076			write as often as you want to a page. The consecutive writes to a page, 
1077			before erasing it again, are restricted to 1-3 writes, depending on the 
1078			manufacturers specifications. This applies similar to the spare area. 
1079		</para>
1080		<para>
1081			Therefore NAND aware filesystems must either write in page size chunks
1082			or hold a writebuffer to collect smaller writes until they sum up to 
1083			pagesize. Available NAND aware filesystems: JFFS2, YAFFS. 		
1084		</para>
1085		<para>
1086			The spare area usage to store filesystem data is controlled by
1087			the spare area placement functionality which is described in one
1088			of the earlier chapters.
1089		</para>
1090	  </chapter>	
1091	  <chapter id="tools">
1092	     	<title>Tools</title>
1093		<para>
1094			The MTD project provides a couple of helpful tools to handle NAND Flash.
1095			<itemizedlist>
1096			<listitem><para>flasherase, flasheraseall: Erase and format FLASH partitions</para></listitem>
1097			<listitem><para>nandwrite: write filesystem images to NAND FLASH</para></listitem>
1098			<listitem><para>nanddump: dump the contents of a NAND FLASH partitions</para></listitem>
1099			</itemizedlist>
1100		</para>
1101		<para>
1102			These tools are aware of the NAND restrictions. Please use those tools
1103			instead of complaining about errors which are caused by non NAND aware
1104			access methods.
1105		</para>
1106	  </chapter>	
1107	
1108	  <chapter id="defines">
1109	     <title>Constants</title>
1110	     <para>
1111	     This chapter describes the constants which might be relevant for a driver developer.
1112	     </para>
1113	     <sect1 id="Chip_option_constants">
1114		<title>Chip option constants</title>
1115	     	<sect2 id="Constants_for_chip_id_table">
1116			<title>Constants for chip id table</title>
1117	     		<para>
1118			These constants are defined in nand.h. They are ored together to describe
1119			the chip functionality.
1120	     		<programlisting>
1121	/* Buswitdh is 16 bit */
1122	#define NAND_BUSWIDTH_16	0x00000002
1123	/* Device supports partial programming without padding */
1124	#define NAND_NO_PADDING		0x00000004
1125	/* Chip has cache program function */
1126	#define NAND_CACHEPRG		0x00000008
1127	/* Chip has copy back function */
1128	#define NAND_COPYBACK		0x00000010
1129	/* AND Chip which has 4 banks and a confusing page / block 
1130	 * assignment. See Renesas datasheet for further information */
1131	#define NAND_IS_AND		0x00000020
1132	/* Chip has a array of 4 pages which can be read without
1133	 * additional ready /busy waits */
1134	#define NAND_4PAGE_ARRAY	0x00000040 
1135			</programlisting>
1136	     		</para>
1137	     	</sect2>
1138	     	<sect2 id="Constants_for_runtime_options">
1139			<title>Constants for runtime options</title>
1140	     		<para>
1141			These constants are defined in nand.h. They are ored together to describe
1142			the functionality.
1143	     		<programlisting>
1144	/* The hw ecc generator provides a syndrome instead a ecc value on read 
1145	 * This can only work if we have the ecc bytes directly behind the 
1146	 * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
1147	#define NAND_HWECC_SYNDROME	0x00020000
1148			</programlisting>
1149	     		</para>
1150	     	</sect2>
1151	     </sect1>	
1152	
1153	     <sect1 id="EEC_selection_constants">
1154		<title>ECC selection constants</title>
1155		<para>
1156		Use these constants to select the ECC algorithm.
1157	  	<programlisting>
1158	/* No ECC. Usage is not recommended ! */
1159	#define NAND_ECC_NONE		0
1160	/* Software ECC 3 byte ECC per 256 Byte data */
1161	#define NAND_ECC_SOFT		1
1162	/* Hardware ECC 3 byte ECC per 256 Byte data */
1163	#define NAND_ECC_HW3_256	2
1164	/* Hardware ECC 3 byte ECC per 512 Byte data */
1165	#define NAND_ECC_HW3_512	3
1166	/* Hardware ECC 6 byte ECC per 512 Byte data */
1167	#define NAND_ECC_HW6_512	4
1168	/* Hardware ECC 6 byte ECC per 512 Byte data */
1169	#define NAND_ECC_HW8_512	6
1170		</programlisting>
1171		</para>
1172	     </sect1>	
1173	
1174	     <sect1 id="Hardware_control_related_constants">
1175		<title>Hardware control related constants</title>
1176		<para>
1177		These constants describe the requested hardware access function when
1178		the boardspecific hardware control function is called
1179	  	<programlisting>
1180	/* Select the chip by setting nCE to low */
1181	#define NAND_CTL_SETNCE 	1
1182	/* Deselect the chip by setting nCE to high */
1183	#define NAND_CTL_CLRNCE		2
1184	/* Select the command latch by setting CLE to high */
1185	#define NAND_CTL_SETCLE		3
1186	/* Deselect the command latch by setting CLE to low */
1187	#define NAND_CTL_CLRCLE		4
1188	/* Select the address latch by setting ALE to high */
1189	#define NAND_CTL_SETALE		5
1190	/* Deselect the address latch by setting ALE to low */
1191	#define NAND_CTL_CLRALE		6
1192	/* Set write protection by setting WP to high. Not used! */
1193	#define NAND_CTL_SETWP		7
1194	/* Clear write protection by setting WP to low. Not used! */
1195	#define NAND_CTL_CLRWP		8
1196		</programlisting>
1197		</para>
1198	     </sect1>	
1199	
1200	     <sect1 id="Bad_block_table_constants">
1201		<title>Bad block table related constants</title>
1202		<para>
1203		These constants describe the options used for bad block
1204		table descriptors.
1205	  	<programlisting>
1206	/* Options for the bad block table descriptors */
1207	
1208	/* The number of bits used per block in the bbt on the device */
1209	#define NAND_BBT_NRBITS_MSK	0x0000000F
1210	#define NAND_BBT_1BIT		0x00000001
1211	#define NAND_BBT_2BIT		0x00000002
1212	#define NAND_BBT_4BIT		0x00000004
1213	#define NAND_BBT_8BIT		0x00000008
1214	/* The bad block table is in the last good block of the device */
1215	#define	NAND_BBT_LASTBLOCK	0x00000010
1216	/* The bbt is at the given page, else we must scan for the bbt */
1217	#define NAND_BBT_ABSPAGE	0x00000020
1218	/* bbt is stored per chip on multichip devices */
1219	#define NAND_BBT_PERCHIP	0x00000080
1220	/* bbt has a version counter at offset veroffs */
1221	#define NAND_BBT_VERSION	0x00000100
1222	/* Create a bbt if none axists */
1223	#define NAND_BBT_CREATE		0x00000200
1224	/* Write bbt if necessary */
1225	#define NAND_BBT_WRITE		0x00001000
1226	/* Read and write back block contents when writing bbt */
1227	#define NAND_BBT_SAVECONTENT	0x00002000
1228		</programlisting>
1229		</para>
1230	     </sect1>	
1231	
1232	  </chapter>
1233	  	
1234	  <chapter id="structs">
1235	     <title>Structures</title>
1236	     <para>
1237	     This chapter contains the autogenerated documentation of the structures which are
1238	     used in the NAND driver and might be relevant for a driver developer. Each  
1239	     struct member has a short description which is marked with an [XXX] identifier.
1240	     See the chapter "Documentation hints" for an explanation.
1241	     </para>
1242	!Iinclude/linux/mtd/nand.h
1243	  </chapter>
1244	
1245	  <chapter id="pubfunctions">
1246	     <title>Public Functions Provided</title>
1247	     <para>
1248	     This chapter contains the autogenerated documentation of the NAND kernel API functions
1249	      which are exported. Each function has a short description which is marked with an [XXX] identifier.
1250	     See the chapter "Documentation hints" for an explanation.
1251	     </para>
1252	!Edrivers/mtd/nand/nand_base.c
1253	!Edrivers/mtd/nand/nand_bbt.c
1254	!Edrivers/mtd/nand/nand_ecc.c
1255	  </chapter>
1256	  
1257	  <chapter id="intfunctions">
1258	     <title>Internal Functions Provided</title>
1259	     <para>
1260	     This chapter contains the autogenerated documentation of the NAND driver internal functions.
1261	     Each function has a short description which is marked with an [XXX] identifier.
1262	     See the chapter "Documentation hints" for an explanation.
1263	     The functions marked with [DEFAULT] might be relevant for a board driver developer.
1264	     </para>
1265	!Idrivers/mtd/nand/nand_base.c
1266	!Idrivers/mtd/nand/nand_bbt.c
1267	<!-- No internal functions for kernel-doc:
1268	X!Idrivers/mtd/nand/nand_ecc.c
1269	-->
1270	  </chapter>
1271	
1272	  <chapter id="credits">
1273	     <title>Credits</title>
1274		<para>
1275			The following people have contributed to the NAND driver:
1276			<orderedlist>
1277				<listitem><para>Steven J. Hill<email>sjhill@realitydiluted.com</email></para></listitem>
1278				<listitem><para>David Woodhouse<email>dwmw2@infradead.org</email></para></listitem>
1279				<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
1280			</orderedlist>
1281			A lot of users have provided bugfixes, improvements and helping hands for testing.
1282			Thanks a lot.
1283		</para>
1284		<para>
1285			The following people have contributed to this document:
1286			<orderedlist>
1287				<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
1288			</orderedlist>
1289		</para>
1290	  </chapter>
1291	</book>
Hide Line Numbers


About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog