About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog

Documentation / DocBook / kernel-hacking.tmpl


Based on kernel version 4.10.8. Page generated on 2017-04-01 14:43 EST.

1	<?xml version="1.0" encoding="UTF-8"?>
2	<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3		"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4	
5	<book id="lk-hacking-guide">
6	 <bookinfo>
7	  <title>Unreliable Guide To Hacking The Linux Kernel</title>
8	  
9	  <authorgroup>
10	   <author>
11	    <firstname>Rusty</firstname>
12	    <surname>Russell</surname>
13	    <affiliation>
14	     <address>
15	      <email>rusty@rustcorp.com.au</email>
16	     </address>
17	    </affiliation>
18	   </author>
19	  </authorgroup>
20	
21	  <copyright>
22	   <year>2005</year>
23	   <holder>Rusty Russell</holder>
24	  </copyright>
25	
26	  <legalnotice>
27	   <para>
28	    This documentation is free software; you can redistribute
29	    it and/or modify it under the terms of the GNU General Public
30	    License as published by the Free Software Foundation; either
31	    version 2 of the License, or (at your option) any later
32	    version.
33	   </para>
34	   
35	   <para>
36	    This program is distributed in the hope that it will be
37	    useful, but WITHOUT ANY WARRANTY; without even the implied
38	    warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
39	    See the GNU General Public License for more details.
40	   </para>
41	   
42	   <para>
43	    You should have received a copy of the GNU General Public
44	    License along with this program; if not, write to the Free
45	    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
46	    MA 02111-1307 USA
47	   </para>
48	   
49	   <para>
50	    For more details see the file COPYING in the source
51	    distribution of Linux.
52	   </para>
53	  </legalnotice>
54	
55	  <releaseinfo>
56	   This is the first release of this document as part of the kernel tarball.
57	  </releaseinfo>
58	
59	 </bookinfo>
60	
61	 <toc></toc>
62	
63	 <chapter id="introduction">
64	  <title>Introduction</title>
65	  <para>
66	   Welcome, gentle reader, to Rusty's Remarkably Unreliable Guide to Linux
67	   Kernel Hacking.  This document describes the common routines and
68	   general requirements for kernel code: its goal is to serve as a
69	   primer for Linux kernel development for experienced C
70	   programmers.  I avoid implementation details: that's what the
71	   code is for, and I ignore whole tracts of useful routines.
72	  </para>
73	  <para>
74	   Before you read this, please understand that I never wanted to
75	   write this document, being grossly under-qualified, but I always
76	   wanted to read it, and this was the only way.  I hope it will
77	   grow into a compendium of best practice, common starting points
78	   and random information.
79	  </para>
80	 </chapter>
81	
82	 <chapter id="basic-players">
83	  <title>The Players</title>
84	
85	  <para>
86	   At any time each of the CPUs in a system can be:
87	  </para>
88	
89	  <itemizedlist>
90	   <listitem>
91	    <para>
92	     not associated with any process, serving a hardware interrupt;
93	    </para>
94	   </listitem>
95	
96	   <listitem>
97	    <para>
98	     not associated with any process, serving a softirq or tasklet;
99	    </para>
100	   </listitem>
101	
102	   <listitem>
103	    <para>
104	     running in kernel space, associated with a process (user context);
105	    </para>
106	   </listitem>
107	
108	   <listitem>
109	    <para>
110	     running a process in user space.
111	    </para>
112	   </listitem>
113	  </itemizedlist>
114	
115	  <para>
116	   There is an ordering between these.  The bottom two can preempt
117	   each other, but above that is a strict hierarchy: each can only be
118	   preempted by the ones above it.  For example, while a softirq is
119	   running on a CPU, no other softirq will preempt it, but a hardware
120	   interrupt can.  However, any other CPUs in the system execute
121	   independently.
122	  </para>
123	
124	  <para>
125	   We'll see a number of ways that the user context can block
126	   interrupts, to become truly non-preemptable.
127	  </para>
128	  
129	  <sect1 id="basics-usercontext">
130	   <title>User Context</title>
131	
132	   <para>
133	    User context is when you are coming in from a system call or other
134	    trap: like userspace, you can be preempted by more important tasks
135	    and by interrupts.  You can sleep, by calling
136	    <function>schedule()</function>.
137	   </para>
138	
139	   <note>
140	    <para>
141	     You are always in user context on module load and unload,
142	     and on operations on the block device layer.
143	    </para>
144	   </note>
145	
146	   <para>
147	    In user context, the <varname>current</varname> pointer (indicating 
148	    the task we are currently executing) is valid, and
149	    <function>in_interrupt()</function>
150	    (<filename>include/linux/interrupt.h</filename>) is <returnvalue>false
151	    </returnvalue>.  
152	   </para>
153	
154	   <caution>
155	    <para>
156	     Beware that if you have preemption or softirqs disabled
157	     (see below), <function>in_interrupt()</function> will return a 
158	     false positive.
159	    </para>
160	   </caution>
161	  </sect1>
162	
163	  <sect1 id="basics-hardirqs">
164	   <title>Hardware Interrupts (Hard IRQs)</title>
165	
166	   <para>
167	    Timer ticks, <hardware>network cards</hardware> and 
168	    <hardware>keyboard</hardware> are examples of real
169	    hardware which produce interrupts at any time.  The kernel runs
170	    interrupt handlers, which services the hardware.  The kernel
171	    guarantees that this handler is never re-entered: if the same
172	    interrupt arrives, it is queued (or dropped).  Because it
173	    disables interrupts, this handler has to be fast: frequently it
174	    simply acknowledges the interrupt, marks a 'software interrupt'
175	    for execution and exits.
176	   </para>
177	
178	   <para>
179	    You can tell you are in a hardware interrupt, because 
180	    <function>in_irq()</function> returns <returnvalue>true</returnvalue>.  
181	   </para>
182	   <caution>
183	    <para>
184	     Beware that this will return a false positive if interrupts are disabled 
185	     (see below).
186	    </para>
187	   </caution>
188	  </sect1>
189	
190	  <sect1 id="basics-softirqs">
191	   <title>Software Interrupt Context: Softirqs and Tasklets</title>
192	
193	   <para>
194	    Whenever a system call is about to return to userspace, or a
195	    hardware interrupt handler exits, any 'software interrupts'
196	    which are marked pending (usually by hardware interrupts) are
197	    run (<filename>kernel/softirq.c</filename>).
198	   </para>
199	
200	   <para>
201	    Much of the real interrupt handling work is done here.  Early in
202	    the transition to <acronym>SMP</acronym>, there were only 'bottom
203	    halves' (BHs), which didn't take advantage of multiple CPUs.  Shortly 
204	    after we switched from wind-up computers made of match-sticks and snot,
205	    we abandoned this limitation and switched to 'softirqs'.
206	   </para>
207	
208	   <para>
209	    <filename class="headerfile">include/linux/interrupt.h</filename> lists the
210	    different softirqs.  A very important softirq is the
211	    timer softirq (<filename
212	    class="headerfile">include/linux/timer.h</filename>): you can
213	    register to have it call functions for you in a given length of
214	    time.
215	   </para>
216	
217	   <para>
218	    Softirqs are often a pain to deal with, since the same softirq
219	    will run simultaneously on more than one CPU.  For this reason,
220	    tasklets (<filename
221	    class="headerfile">include/linux/interrupt.h</filename>) are more
222	    often used: they are dynamically-registrable (meaning you can have
223	    as many as you want), and they also guarantee that any tasklet
224	    will only run on one CPU at any time, although different tasklets
225	    can run simultaneously.
226	   </para>
227	   <caution>
228	    <para>
229	     The name 'tasklet' is misleading: they have nothing to do with 'tasks',
230	     and probably more to do with some bad vodka Alexey Kuznetsov had at the 
231	     time.
232	    </para>
233	   </caution>
234	
235	   <para>
236	    You can tell you are in a softirq (or tasklet)
237	    using the <function>in_softirq()</function> macro 
238	    (<filename class="headerfile">include/linux/interrupt.h</filename>).
239	   </para>
240	   <caution>
241	    <para>
242	     Beware that this will return a false positive if a bh lock (see below)
243	     is held.
244	    </para>
245	   </caution>
246	  </sect1>
247	 </chapter>
248	
249	 <chapter id="basic-rules">
250	  <title>Some Basic Rules</title>
251	
252	  <variablelist>
253	   <varlistentry>
254	    <term>No memory protection</term>
255	    <listitem>
256	     <para>
257	      If you corrupt memory, whether in user context or
258	      interrupt context, the whole machine will crash.  Are you
259	      sure you can't do what you want in userspace?
260	     </para>
261	    </listitem>
262	   </varlistentry>
263	
264	   <varlistentry>
265	    <term>No floating point or <acronym>MMX</acronym></term>
266	    <listitem>
267	     <para>
268	      The <acronym>FPU</acronym> context is not saved; even in user
269	      context the <acronym>FPU</acronym> state probably won't
270	      correspond with the current process: you would mess with some
271	      user process' <acronym>FPU</acronym> state.  If you really want
272	      to do this, you would have to explicitly save/restore the full
273	      <acronym>FPU</acronym> state (and avoid context switches).  It
274	      is generally a bad idea; use fixed point arithmetic first.
275	     </para>
276	    </listitem>
277	   </varlistentry>
278	
279	   <varlistentry>
280	    <term>A rigid stack limit</term>
281	    <listitem>
282	     <para>
283	      Depending on configuration options the kernel stack is about 3K to 6K for most 32-bit architectures: it's
284	      about 14K on most 64-bit archs, and often shared with interrupts
285	      so you can't use it all.  Avoid deep recursion and huge local
286	      arrays on the stack (allocate them dynamically instead).
287	     </para>
288	    </listitem>
289	   </varlistentry>
290	
291	   <varlistentry>
292	    <term>The Linux kernel is portable</term>
293	    <listitem>
294	     <para>
295	      Let's keep it that way.  Your code should be 64-bit clean,
296	      and endian-independent.  You should also minimize CPU
297	      specific stuff, e.g. inline assembly should be cleanly
298	      encapsulated and minimized to ease porting.  Generally it
299	      should be restricted to the architecture-dependent part of
300	      the kernel tree.
301	     </para>
302	    </listitem>
303	   </varlistentry>
304	  </variablelist>
305	 </chapter>
306	
307	 <chapter id="ioctls">
308	  <title>ioctls: Not writing a new system call</title>
309	
310	  <para>
311	   A system call generally looks like this
312	  </para>
313	
314	  <programlisting>
315	asmlinkage long sys_mycall(int arg)
316	{
317	        return 0; 
318	}
319	  </programlisting>
320	
321	  <para>
322	   First, in most cases you don't want to create a new system call.
323	   You create a character device and implement an appropriate ioctl
324	   for it.  This is much more flexible than system calls, doesn't have
325	   to be entered in every architecture's
326	   <filename class="headerfile">include/asm/unistd.h</filename> and
327	   <filename>arch/kernel/entry.S</filename> file, and is much more
328	   likely to be accepted by Linus.
329	  </para>
330	
331	  <para>
332	   If all your routine does is read or write some parameter, consider
333	   implementing a <function>sysfs</function> interface instead.
334	  </para>
335	
336	  <para>
337	   Inside the ioctl you're in user context to a process.  When a
338	   error occurs you return a negated errno (see
339	   <filename class="headerfile">include/linux/errno.h</filename>),
340	   otherwise you return <returnvalue>0</returnvalue>.
341	  </para>
342	
343	  <para>
344	   After you slept you should check if a signal occurred: the
345	   Unix/Linux way of handling signals is to temporarily exit the
346	   system call with the <constant>-ERESTARTSYS</constant> error.  The
347	   system call entry code will switch back to user context, process
348	   the signal handler and then your system call will be restarted
349	   (unless the user disabled that).  So you should be prepared to
350	   process the restart, e.g. if you're in the middle of manipulating
351	   some data structure.
352	  </para>
353	
354	  <programlisting>
355	if (signal_pending(current))
356	        return -ERESTARTSYS;
357	  </programlisting>
358	
359	  <para>
360	   If you're doing longer computations: first think userspace. If you
361	   <emphasis>really</emphasis> want to do it in kernel you should
362	   regularly check if you need to give up the CPU (remember there is
363	   cooperative multitasking per CPU).  Idiom:
364	  </para>
365	
366	  <programlisting>
367	cond_resched(); /* Will sleep */ 
368	  </programlisting>
369	
370	  <para>
371	   A short note on interface design: the UNIX system call motto is
372	   "Provide mechanism not policy".
373	  </para>
374	 </chapter>
375	
376	 <chapter id="deadlock-recipes">
377	  <title>Recipes for Deadlock</title>
378	
379	  <para>
380	   You cannot call any routines which may sleep, unless:
381	  </para>
382	  <itemizedlist>
383	   <listitem>
384	    <para>
385	     You are in user context.
386	    </para>
387	   </listitem>
388	
389	   <listitem>
390	    <para>
391	     You do not own any spinlocks.
392	    </para>
393	   </listitem>
394	
395	   <listitem>
396	    <para>
397	     You have interrupts enabled (actually, Andi Kleen says
398	     that the scheduling code will enable them for you, but
399	     that's probably not what you wanted).
400	    </para>
401	   </listitem>
402	  </itemizedlist>
403	
404	  <para>
405	   Note that some functions may sleep implicitly: common ones are
406	   the user space access functions (*_user) and memory allocation
407	   functions without <symbol>GFP_ATOMIC</symbol>.
408	  </para>
409	
410	  <para>
411	   You should always compile your kernel
412	   <symbol>CONFIG_DEBUG_ATOMIC_SLEEP</symbol> on, and it will warn
413	   you if you break these rules.  If you <emphasis>do</emphasis> break
414	   the rules, you will eventually lock up your box.
415	  </para>
416	
417	  <para>
418	   Really.
419	  </para>
420	 </chapter>
421	
422	 <chapter id="common-routines">
423	  <title>Common Routines</title>
424	
425	  <sect1 id="routines-printk">
426	   <title>
427	    <function>printk()</function>
428	    <filename class="headerfile">include/linux/kernel.h</filename>
429	   </title>
430	
431	   <para>
432	    <function>printk()</function> feeds kernel messages to the
433	    console, dmesg, and the syslog daemon.  It is useful for debugging
434	    and reporting errors, and can be used inside interrupt context,
435	    but use with caution: a machine which has its console flooded with
436	    printk messages is unusable.  It uses a format string mostly
437	    compatible with ANSI C printf, and C string concatenation to give
438	    it a first "priority" argument:
439	   </para>
440	
441	   <programlisting>
442	printk(KERN_INFO "i = %u\n", i);
443	   </programlisting>
444	
445	   <para>
446	    See <filename class="headerfile">include/linux/kernel.h</filename>;
447	    for other KERN_ values; these are interpreted by syslog as the
448	    level.  Special case: for printing an IP address use
449	   </para>
450	
451	   <programlisting>
452	__be32 ipaddress;
453	printk(KERN_INFO "my ip: %pI4\n", &amp;ipaddress);
454	   </programlisting>
455	
456	   <para>
457	    <function>printk()</function> internally uses a 1K buffer and does
458	    not catch overruns.  Make sure that will be enough.
459	   </para>
460	
461	   <note>
462	    <para>
463	     You will know when you are a real kernel hacker
464	     when you start typoing printf as printk in your user programs :)
465	    </para>
466	   </note>
467	
468	   <!--- From the Lions book reader department --> 
469	
470	   <note>
471	    <para>
472	     Another sidenote: the original Unix Version 6 sources had a
473	     comment on top of its printf function: "Printf should not be
474	     used for chit-chat".  You should follow that advice.
475	    </para>
476	   </note>
477	  </sect1>
478	
479	  <sect1 id="routines-copy">
480	   <title>
481	    <function>copy_[to/from]_user()</function>
482	    /
483	    <function>get_user()</function>
484	    /
485	    <function>put_user()</function>
486	    <filename class="headerfile">include/linux/uaccess.h</filename>
487	   </title>  
488	
489	   <para>
490	    <emphasis>[SLEEPS]</emphasis>
491	   </para>
492	
493	   <para>
494	    <function>put_user()</function> and <function>get_user()</function>
495	    are used to get and put single values (such as an int, char, or
496	    long) from and to userspace.  A pointer into userspace should
497	    never be simply dereferenced: data should be copied using these
498	    routines.  Both return <constant>-EFAULT</constant> or 0.
499	   </para>
500	   <para>
501	    <function>copy_to_user()</function> and
502	    <function>copy_from_user()</function> are more general: they copy
503	    an arbitrary amount of data to and from userspace.
504	    <caution>
505	     <para>
506	      Unlike <function>put_user()</function> and
507	      <function>get_user()</function>, they return the amount of
508	      uncopied data (ie. <returnvalue>0</returnvalue> still means
509	      success).
510	     </para>
511	    </caution>
512	    [Yes, this moronic interface makes me cringe.  The flamewar comes up every year or so. --RR.]
513	   </para>
514	   <para>
515	    The functions may sleep implicitly. This should never be called
516	    outside user context (it makes no sense), with interrupts
517	    disabled, or a spinlock held.
518	   </para>
519	  </sect1>
520	
521	  <sect1 id="routines-kmalloc">
522	   <title><function>kmalloc()</function>/<function>kfree()</function>
523	    <filename class="headerfile">include/linux/slab.h</filename></title>
524	
525	   <para>
526	    <emphasis>[MAY SLEEP: SEE BELOW]</emphasis>
527	   </para>
528	
529	   <para>
530	    These routines are used to dynamically request pointer-aligned
531	    chunks of memory, like malloc and free do in userspace, but
532	    <function>kmalloc()</function> takes an extra flag word.
533	    Important values:
534	   </para>
535	
536	   <variablelist>
537	    <varlistentry>
538	     <term>
539	      <constant>
540	       GFP_KERNEL
541	      </constant>
542	     </term>
543	     <listitem>
544	      <para>
545	       May sleep and swap to free memory. Only allowed in user
546	       context, but is the most reliable way to allocate memory.
547	      </para>
548	     </listitem>
549	    </varlistentry>
550	    
551	    <varlistentry>
552	     <term>
553	      <constant>
554	       GFP_ATOMIC
555	      </constant>
556	     </term>
557	     <listitem>
558	      <para>
559	       Don't sleep. Less reliable than <constant>GFP_KERNEL</constant>,
560	       but may be called from interrupt context. You should
561	       <emphasis>really</emphasis> have a good out-of-memory
562	       error-handling strategy.
563	      </para>
564	     </listitem>
565	    </varlistentry>
566	    
567	    <varlistentry>
568	     <term>
569	      <constant>
570	       GFP_DMA
571	      </constant>
572	     </term>
573	     <listitem>
574	      <para>
575	       Allocate ISA DMA lower than 16MB. If you don't know what that
576	       is you don't need it.  Very unreliable.
577	      </para>
578	     </listitem>
579	    </varlistentry>
580	   </variablelist>
581	
582	   <para>
583	    If you see a <errorname>sleeping function called from invalid
584	    context</errorname> warning message, then maybe you called a
585	    sleeping allocation function from interrupt context without
586	    <constant>GFP_ATOMIC</constant>.  You should really fix that.
587	    Run, don't walk.
588	   </para>
589	
590	   <para>
591	    If you are allocating at least <constant>PAGE_SIZE</constant>
592	    (<filename class="headerfile">include/asm/page.h</filename>) bytes,
593	    consider using <function>__get_free_pages()</function>
594	
595	    (<filename class="headerfile">include/linux/mm.h</filename>).  It
596	    takes an order argument (0 for page sized, 1 for double page, 2
597	    for four pages etc.) and the same memory priority flag word as
598	    above.
599	   </para>
600	
601	   <para>
602	    If you are allocating more than a page worth of bytes you can use
603	    <function>vmalloc()</function>.  It'll allocate virtual memory in
604	    the kernel map.  This block is not contiguous in physical memory,
605	    but the <acronym>MMU</acronym> makes it look like it is for you
606	    (so it'll only look contiguous to the CPUs, not to external device
607	    drivers).  If you really need large physically contiguous memory
608	    for some weird device, you have a problem: it is poorly supported
609	    in Linux because after some time memory fragmentation in a running
610	    kernel makes it hard.  The best way is to allocate the block early
611	    in the boot process via the <function>alloc_bootmem()</function>
612	    routine.
613	   </para>
614	
615	   <para>
616	    Before inventing your own cache of often-used objects consider
617	    using a slab cache in
618	    <filename class="headerfile">include/linux/slab.h</filename>
619	   </para>
620	  </sect1>
621	
622	  <sect1 id="routines-current">
623	   <title><function>current</function>
624	    <filename class="headerfile">include/asm/current.h</filename></title>
625	
626	   <para>
627	    This global variable (really a macro) contains a pointer to
628	    the current task structure, so is only valid in user context.
629	    For example, when a process makes a system call, this will
630	    point to the task structure of the calling process.  It is
631	    <emphasis>not NULL</emphasis> in interrupt context.
632	   </para>
633	  </sect1>
634	
635	  <sect1 id="routines-udelay">
636	   <title><function>mdelay()</function>/<function>udelay()</function>
637	     <filename class="headerfile">include/asm/delay.h</filename>
638	     <filename class="headerfile">include/linux/delay.h</filename>
639	   </title>
640	
641	   <para>
642	    The <function>udelay()</function> and <function>ndelay()</function> functions can be used for small pauses.
643	    Do not use large values with them as you risk
644	    overflow - the helper function <function>mdelay()</function> is useful
645	    here, or consider <function>msleep()</function>.
646	   </para> 
647	  </sect1>
648	 
649	  <sect1 id="routines-endian">
650	   <title><function>cpu_to_be32()</function>/<function>be32_to_cpu()</function>/<function>cpu_to_le32()</function>/<function>le32_to_cpu()</function>
651	     <filename class="headerfile">include/asm/byteorder.h</filename>
652	   </title>
653	
654	   <para>
655	    The <function>cpu_to_be32()</function> family (where the "32" can
656	    be replaced by 64 or 16, and the "be" can be replaced by "le") are
657	    the general way to do endian conversions in the kernel: they
658	    return the converted value.  All variations supply the reverse as
659	    well: <function>be32_to_cpu()</function>, etc.
660	   </para>
661	
662	   <para>
663	    There are two major variations of these functions: the pointer
664	    variation, such as <function>cpu_to_be32p()</function>, which take
665	    a pointer to the given type, and return the converted value.  The
666	    other variation is the "in-situ" family, such as
667	    <function>cpu_to_be32s()</function>, which convert value referred
668	    to by the pointer, and return void.
669	   </para> 
670	  </sect1>
671	
672	  <sect1 id="routines-local-irqs">
673	   <title><function>local_irq_save()</function>/<function>local_irq_restore()</function>
674	    <filename class="headerfile">include/linux/irqflags.h</filename>
675	   </title>
676	
677	   <para>
678	    These routines disable hard interrupts on the local CPU, and
679	    restore them.  They are reentrant; saving the previous state in
680	    their one <varname>unsigned long flags</varname> argument.  If you
681	    know that interrupts are enabled, you can simply use
682	    <function>local_irq_disable()</function> and
683	    <function>local_irq_enable()</function>.
684	   </para>
685	  </sect1>
686	
687	  <sect1 id="routines-softirqs">
688	   <title><function>local_bh_disable()</function>/<function>local_bh_enable()</function>
689	    <filename class="headerfile">include/linux/interrupt.h</filename></title>
690	
691	   <para>
692	    These routines disable soft interrupts on the local CPU, and
693	    restore them.  They are reentrant; if soft interrupts were
694	    disabled before, they will still be disabled after this pair
695	    of functions has been called.  They prevent softirqs and tasklets
696	    from running on the current CPU.
697	   </para>
698	  </sect1>
699	
700	  <sect1 id="routines-processorids">
701	   <title><function>smp_processor_id</function>()
702	    <filename class="headerfile">include/asm/smp.h</filename></title>
703	   
704	   <para>
705	    <function>get_cpu()</function> disables preemption (so you won't
706	    suddenly get moved to another CPU) and returns the current
707	    processor number, between 0 and <symbol>NR_CPUS</symbol>.  Note
708	    that the CPU numbers are not necessarily continuous.  You return
709	    it again with <function>put_cpu()</function> when you are done.
710	   </para>
711	   <para>
712	    If you know you cannot be preempted by another task (ie. you are
713	    in interrupt context, or have preemption disabled) you can use
714	    smp_processor_id().
715	   </para>
716	  </sect1>
717	
718	  <sect1 id="routines-init">
719	   <title><type>__init</type>/<type>__exit</type>/<type>__initdata</type>
720	    <filename class="headerfile">include/linux/init.h</filename></title>
721	
722	   <para>
723	    After boot, the kernel frees up a special section; functions
724	    marked with <type>__init</type> and data structures marked with
725	    <type>__initdata</type> are dropped after boot is complete: similarly
726	    modules discard this memory after initialization.  <type>__exit</type>
727	    is used to declare a function which is only required on exit: the
728	    function will be dropped if this file is not compiled as a module.
729	    See the header file for use. Note that it makes no sense for a function
730	    marked with <type>__init</type> to be exported to modules with 
731	    <function>EXPORT_SYMBOL()</function> - this will break.
732	   </para>
733	
734	  </sect1>
735	
736	  <sect1 id="routines-init-again">
737	   <title><function>__initcall()</function>/<function>module_init()</function>
738	    <filename class="headerfile">include/linux/init.h</filename></title>
739	   <para>
740	    Many parts of the kernel are well served as a module
741	    (dynamically-loadable parts of the kernel).  Using the
742	    <function>module_init()</function> and
743	    <function>module_exit()</function> macros it is easy to write code
744	    without #ifdefs which can operate both as a module or built into
745	    the kernel.
746	   </para>
747	
748	   <para>
749	    The <function>module_init()</function> macro defines which
750	    function is to be called at module insertion time (if the file is
751	    compiled as a module), or at boot time: if the file is not
752	    compiled as a module the <function>module_init()</function> macro
753	    becomes equivalent to <function>__initcall()</function>, which
754	    through linker magic ensures that the function is called on boot.
755	   </para>
756	
757	   <para>
758	    The function can return a negative error number to cause
759	    module loading to fail (unfortunately, this has no effect if
760	    the module is compiled into the kernel).  This function is
761	    called in user context with interrupts enabled, so it can sleep.
762	   </para>
763	  </sect1>
764	  
765	  <sect1 id="routines-moduleexit">
766	   <title> <function>module_exit()</function>
767	    <filename class="headerfile">include/linux/init.h</filename> </title>
768	
769	   <para>
770	    This macro defines the function to be called at module removal
771	    time (or never, in the case of the file compiled into the
772	    kernel).  It will only be called if the module usage count has
773	    reached zero.  This function can also sleep, but cannot fail:
774	    everything must be cleaned up by the time it returns.
775	   </para>
776	
777	   <para>
778	    Note that this macro is optional: if it is not present, your
779	    module will not be removable (except for 'rmmod -f').
780	   </para>
781	  </sect1>
782	
783	  <sect1 id="routines-module-use-counters">
784	   <title> <function>try_module_get()</function>/<function>module_put()</function>
785	    <filename class="headerfile">include/linux/module.h</filename></title>
786	
787	   <para>
788	    These manipulate the module usage count, to protect against
789	    removal (a module also can't be removed if another module uses one
790	    of its exported symbols: see below).  Before calling into module
791	    code, you should call <function>try_module_get()</function> on
792	    that module: if it fails, then the module is being removed and you
793	    should act as if it wasn't there.  Otherwise, you can safely enter
794	    the module, and call <function>module_put()</function> when you're
795	    finished.
796	   </para>
797	
798	   <para>
799	   Most registerable structures have an
800	   <structfield>owner</structfield> field, such as in the
801	   <structname>file_operations</structname> structure. Set this field
802	   to the macro <symbol>THIS_MODULE</symbol>.
803	   </para>
804	  </sect1>
805	
806	 <!-- add info on new-style module refcounting here -->
807	 </chapter>
808	
809	 <chapter id="queues">
810	  <title>Wait Queues
811	   <filename class="headerfile">include/linux/wait.h</filename>
812	  </title>
813	  <para>
814	   <emphasis>[SLEEPS]</emphasis>
815	  </para>
816	
817	  <para>
818	   A wait queue is used to wait for someone to wake you up when a
819	   certain condition is true.  They must be used carefully to ensure
820	   there is no race condition.  You declare a
821	   <type>wait_queue_head_t</type>, and then processes which want to
822	   wait for that condition declare a <type>wait_queue_t</type>
823	   referring to themselves, and place that in the queue.
824	  </para>
825	
826	  <sect1 id="queue-declaring">
827	   <title>Declaring</title>
828	   
829	   <para>
830	    You declare a <type>wait_queue_head_t</type> using the
831	    <function>DECLARE_WAIT_QUEUE_HEAD()</function> macro, or using the
832	    <function>init_waitqueue_head()</function> routine in your
833	    initialization code.
834	   </para>
835	  </sect1>
836	  
837	  <sect1 id="queue-waitqueue">
838	   <title>Queuing</title>
839	   
840	   <para>
841	    Placing yourself in the waitqueue is fairly complex, because you
842	    must put yourself in the queue before checking the condition.
843	    There is a macro to do this:
844	    <function>wait_event_interruptible()</function>
845	
846	    <filename class="headerfile">include/linux/wait.h</filename> The
847	    first argument is the wait queue head, and the second is an
848	    expression which is evaluated; the macro returns
849	    <returnvalue>0</returnvalue> when this expression is true, or
850	    <returnvalue>-ERESTARTSYS</returnvalue> if a signal is received.
851	    The <function>wait_event()</function> version ignores signals.
852	   </para>
853	 
854	  </sect1>
855	
856	  <sect1 id="queue-waking">
857	   <title>Waking Up Queued Tasks</title>
858	   
859	   <para>
860	    Call <function>wake_up()</function>
861	
862	    <filename class="headerfile">include/linux/wait.h</filename>;,
863	    which will wake up every process in the queue.  The exception is
864	    if one has <constant>TASK_EXCLUSIVE</constant> set, in which case
865	    the remainder of the queue will not be woken.  There are other variants
866	    of this basic function available in the same header.
867	   </para>
868	  </sect1>
869	 </chapter>
870	
871	 <chapter id="atomic-ops">
872	  <title>Atomic Operations</title>
873	
874	  <para>
875	   Certain operations are guaranteed atomic on all platforms.  The
876	   first class of operations work on <type>atomic_t</type>
877	
878	   <filename class="headerfile">include/asm/atomic.h</filename>; this
879	   contains a signed integer (at least 32 bits long), and you must use
880	   these functions to manipulate or read atomic_t variables.
881	   <function>atomic_read()</function> and
882	   <function>atomic_set()</function> get and set the counter,
883	   <function>atomic_add()</function>,
884	   <function>atomic_sub()</function>,
885	   <function>atomic_inc()</function>,
886	   <function>atomic_dec()</function>, and
887	   <function>atomic_dec_and_test()</function> (returns
888	   <returnvalue>true</returnvalue> if it was decremented to zero).
889	  </para>
890	
891	  <para>
892	   Yes.  It returns <returnvalue>true</returnvalue> (i.e. != 0) if the
893	   atomic variable is zero.
894	  </para>
895	
896	  <para>
897	   Note that these functions are slower than normal arithmetic, and
898	   so should not be used unnecessarily.
899	  </para>
900	
901	  <para>
902	   The second class of atomic operations is atomic bit operations on an
903	   <type>unsigned long</type>, defined in
904	
905	   <filename class="headerfile">include/linux/bitops.h</filename>.  These
906	   operations generally take a pointer to the bit pattern, and a bit
907	   number: 0 is the least significant bit.
908	   <function>set_bit()</function>, <function>clear_bit()</function>
909	   and <function>change_bit()</function> set, clear, and flip the
910	   given bit.  <function>test_and_set_bit()</function>,
911	   <function>test_and_clear_bit()</function> and
912	   <function>test_and_change_bit()</function> do the same thing,
913	   except return true if the bit was previously set; these are
914	   particularly useful for atomically setting flags.
915	  </para>
916	  
917	  <para>
918	   It is possible to call these operations with bit indices greater
919	   than BITS_PER_LONG.  The resulting behavior is strange on big-endian
920	   platforms though so it is a good idea not to do this.
921	  </para>
922	 </chapter>
923	
924	 <chapter id="symbols">
925	  <title>Symbols</title>
926	
927	  <para>
928	   Within the kernel proper, the normal linking rules apply
929	   (ie. unless a symbol is declared to be file scope with the
930	   <type>static</type> keyword, it can be used anywhere in the
931	   kernel).  However, for modules, a special exported symbol table is
932	   kept which limits the entry points to the kernel proper.  Modules
933	   can also export symbols.
934	  </para>
935	
936	  <sect1 id="sym-exportsymbols">
937	   <title><function>EXPORT_SYMBOL()</function>
938	    <filename class="headerfile">include/linux/export.h</filename></title>
939	
940	   <para>
941	    This is the classic method of exporting a symbol: dynamically
942	    loaded modules will be able to use the symbol as normal.
943	   </para>
944	  </sect1>
945	
946	  <sect1 id="sym-exportsymbols-gpl">
947	   <title><function>EXPORT_SYMBOL_GPL()</function>
948	    <filename class="headerfile">include/linux/export.h</filename></title>
949	
950	   <para>
951	    Similar to <function>EXPORT_SYMBOL()</function> except that the
952	    symbols exported by <function>EXPORT_SYMBOL_GPL()</function> can
953	    only be seen by modules with a
954	    <function>MODULE_LICENSE()</function> that specifies a GPL
955	    compatible license.  It implies that the function is considered
956	    an internal implementation issue, and not really an interface.
957	    Some maintainers and developers may however
958	    require EXPORT_SYMBOL_GPL() when adding any new APIs or functionality.
959	   </para>
960	  </sect1>
961	 </chapter>
962	
963	 <chapter id="conventions">
964	  <title>Routines and Conventions</title>
965	
966	  <sect1 id="conventions-doublelinkedlist">
967	   <title>Double-linked lists
968	    <filename class="headerfile">include/linux/list.h</filename></title>
969	
970	   <para>
971	    There used to be three sets of linked-list routines in the kernel
972	    headers, but this one is the winner.  If you don't have some
973	    particular pressing need for a single list, it's a good choice.
974	   </para>
975	
976	   <para>
977	    In particular, <function>list_for_each_entry</function> is useful.
978	   </para>
979	  </sect1>
980	
981	  <sect1 id="convention-returns">
982	   <title>Return Conventions</title>
983	
984	   <para>
985	    For code called in user context, it's very common to defy C
986	    convention, and return <returnvalue>0</returnvalue> for success,
987	    and a negative error number
988	    (eg. <returnvalue>-EFAULT</returnvalue>) for failure.  This can be
989	    unintuitive at first, but it's fairly widespread in the kernel.
990	   </para>
991	
992	   <para>
993	    Using <function>ERR_PTR()</function>
994	
995	    <filename class="headerfile">include/linux/err.h</filename>; to
996	    encode a negative error number into a pointer, and
997	    <function>IS_ERR()</function> and <function>PTR_ERR()</function>
998	    to get it back out again: avoids a separate pointer parameter for
999	    the error number.  Icky, but in a good way.
1000	   </para>
1001	  </sect1>
1002	
1003	  <sect1 id="conventions-borkedcompile">
1004	   <title>Breaking Compilation</title>
1005	
1006	   <para>
1007	    Linus and the other developers sometimes change function or
1008	    structure names in development kernels; this is not done just to
1009	    keep everyone on their toes: it reflects a fundamental change
1010	    (eg. can no longer be called with interrupts on, or does extra
1011	    checks, or doesn't do checks which were caught before).  Usually
1012	    this is accompanied by a fairly complete note to the linux-kernel
1013	    mailing list; search the archive.  Simply doing a global replace
1014	    on the file usually makes things <emphasis>worse</emphasis>.
1015	   </para>
1016	  </sect1>
1017	
1018	  <sect1 id="conventions-initialising">
1019	   <title>Initializing structure members</title>
1020	
1021	   <para>
1022	    The preferred method of initializing structures is to use
1023	    designated initialisers, as defined by ISO C99, eg:
1024	   </para>
1025	   <programlisting>
1026	static struct block_device_operations opt_fops = {
1027	        .open               = opt_open,
1028	        .release            = opt_release,
1029	        .ioctl              = opt_ioctl,
1030	        .check_media_change = opt_media_change,
1031	};
1032	   </programlisting>
1033	   <para>
1034	    This makes it easy to grep for, and makes it clear which
1035	    structure fields are set.  You should do this because it looks
1036	    cool.
1037	   </para>
1038	  </sect1>
1039	
1040	  <sect1 id="conventions-gnu-extns">
1041	   <title>GNU Extensions</title>
1042	
1043	   <para>
1044	    GNU Extensions are explicitly allowed in the Linux kernel.
1045	    Note that some of the more complex ones are not very well
1046	    supported, due to lack of general use, but the following are
1047	    considered standard (see the GCC info page section "C
1048	    Extensions" for more details - Yes, really the info page, the
1049	    man page is only a short summary of the stuff in info).
1050	   </para>
1051	   <itemizedlist>
1052	    <listitem>
1053	     <para>
1054	      Inline functions
1055	     </para>
1056	    </listitem>
1057	    <listitem>
1058	     <para>
1059	      Statement expressions (ie. the ({ and }) constructs).
1060	     </para>
1061	    </listitem>
1062	    <listitem>
1063	     <para>
1064	      Declaring attributes of a function / variable / type
1065	      (__attribute__)
1066	     </para>
1067	    </listitem>
1068	    <listitem>
1069	     <para>
1070	      typeof
1071	     </para>
1072	    </listitem>
1073	    <listitem>
1074	     <para>
1075	      Zero length arrays
1076	     </para>
1077	    </listitem>
1078	    <listitem>
1079	     <para>
1080	      Macro varargs
1081	     </para>
1082	    </listitem>
1083	    <listitem>
1084	     <para>
1085	      Arithmetic on void pointers
1086	     </para>
1087	    </listitem>
1088	    <listitem>
1089	     <para>
1090	      Non-Constant initializers
1091	     </para>
1092	    </listitem>
1093	    <listitem>
1094	     <para>
1095	      Assembler Instructions (not outside arch/ and include/asm/)
1096	     </para>
1097	    </listitem>
1098	    <listitem>
1099	     <para>
1100	      Function names as strings (__func__).
1101	     </para>
1102	    </listitem>
1103	    <listitem>
1104	     <para>
1105	      __builtin_constant_p()
1106	     </para>
1107	    </listitem>
1108	   </itemizedlist>
1109	
1110	   <para>
1111	    Be wary when using long long in the kernel, the code gcc generates for
1112	    it is horrible and worse: division and multiplication does not work
1113	    on i386 because the GCC runtime functions for it are missing from
1114	    the kernel environment.
1115	   </para>
1116	
1117	    <!-- FIXME: add a note about ANSI aliasing cleanness -->
1118	  </sect1>
1119	
1120	  <sect1 id="conventions-cplusplus">
1121	   <title>C++</title>
1122	   
1123	   <para>
1124	    Using C++ in the kernel is usually a bad idea, because the
1125	    kernel does not provide the necessary runtime environment
1126	    and the include files are not tested for it.  It is still
1127	    possible, but not recommended.  If you really want to do
1128	    this, forget about exceptions at least.
1129	   </para>
1130	  </sect1>
1131	
1132	  <sect1 id="conventions-ifdef">
1133	   <title>&num;if</title>
1134	   
1135	   <para>
1136	    It is generally considered cleaner to use macros in header files
1137	    (or at the top of .c files) to abstract away functions rather than
1138	    using `#if' pre-processor statements throughout the source code.
1139	   </para>
1140	  </sect1>
1141	 </chapter>
1142	
1143	 <chapter id="submitting">
1144	  <title>Putting Your Stuff in the Kernel</title>
1145	
1146	  <para>
1147	   In order to get your stuff into shape for official inclusion, or
1148	   even to make a neat patch, there's administrative work to be
1149	   done:
1150	  </para>
1151	  <itemizedlist>
1152	   <listitem>
1153	    <para>
1154	     Figure out whose pond you've been pissing in.  Look at the top of
1155	     the source files, inside the <filename>MAINTAINERS</filename>
1156	     file, and last of all in the <filename>CREDITS</filename> file.
1157	     You should coordinate with this person to make sure you're not
1158	     duplicating effort, or trying something that's already been
1159	     rejected.
1160	    </para>
1161	
1162	    <para>
1163	     Make sure you put your name and EMail address at the top of
1164	     any files you create or mangle significantly.  This is the
1165	     first place people will look when they find a bug, or when
1166	     <emphasis>they</emphasis> want to make a change.
1167	    </para>
1168	   </listitem>
1169	
1170	   <listitem>
1171	    <para>
1172	     Usually you want a configuration option for your kernel hack.
1173	     Edit <filename>Kconfig</filename> in the appropriate directory.
1174	     The Config language is simple to use by cut and paste, and there's
1175	     complete documentation in
1176	     <filename>Documentation/kbuild/kconfig-language.txt</filename>.
1177	    </para>
1178	
1179	    <para>
1180	     In your description of the option, make sure you address both the
1181	     expert user and the user who knows nothing about your feature.  Mention
1182	     incompatibilities and issues here.  <emphasis> Definitely
1183	     </emphasis> end your description with <quote> if in doubt, say N
1184	     </quote> (or, occasionally, `Y'); this is for people who have no
1185	     idea what you are talking about.
1186	    </para>
1187	   </listitem>
1188	
1189	   <listitem>
1190	    <para>
1191	     Edit the <filename>Makefile</filename>: the CONFIG variables are
1192	     exported here so you can usually just add a "obj-$(CONFIG_xxx) +=
1193	     xxx.o" line.  The syntax is documented in
1194	     <filename>Documentation/kbuild/makefiles.txt</filename>.
1195	    </para>
1196	   </listitem>
1197	
1198	   <listitem>
1199	    <para>
1200	     Put yourself in <filename>CREDITS</filename> if you've done
1201	     something noteworthy, usually beyond a single file (your name
1202	     should be at the top of the source files anyway).
1203	     <filename>MAINTAINERS</filename> means you want to be consulted
1204	     when changes are made to a subsystem, and hear about bugs; it
1205	     implies a more-than-passing commitment to some part of the code.
1206	    </para>
1207	   </listitem>
1208	   
1209	   <listitem>
1210	    <para>
1211	     Finally, don't forget to read <filename>Documentation/process/submitting-patches.rst</filename>
1212	     and possibly <filename>Documentation/process/submitting-drivers.rst</filename>.
1213	    </para>
1214	   </listitem>
1215	  </itemizedlist>
1216	 </chapter>
1217	
1218	 <chapter id="cantrips">
1219	  <title>Kernel Cantrips</title>
1220	
1221	  <para>
1222	   Some favorites from browsing the source.  Feel free to add to this
1223	   list.
1224	  </para>
1225	
1226	  <para>
1227	   <filename>arch/x86/include/asm/delay.h:</filename>
1228	  </para>
1229	  <programlisting>
1230	#define ndelay(n) (__builtin_constant_p(n) ? \
1231	        ((n) > 20000 ? __bad_ndelay() : __const_udelay((n) * 5ul)) : \
1232	        __ndelay(n))
1233	  </programlisting>
1234	
1235	  <para>
1236	   <filename>include/linux/fs.h</filename>:
1237	  </para>
1238	  <programlisting>
1239	/*
1240	 * Kernel pointers have redundant information, so we can use a
1241	 * scheme where we can return either an error code or a dentry
1242	 * pointer with the same return value.
1243	 *
1244	 * This should be a per-architecture thing, to allow different
1245	 * error and pointer decisions.
1246	 */
1247	 #define ERR_PTR(err)    ((void *)((long)(err)))
1248	 #define PTR_ERR(ptr)    ((long)(ptr))
1249	 #define IS_ERR(ptr)     ((unsigned long)(ptr) > (unsigned long)(-1000))
1250	</programlisting>
1251	
1252	  <para>
1253	   <filename>arch/x86/include/asm/uaccess_32.h:</filename>
1254	  </para>
1255	
1256	  <programlisting>
1257	#define copy_to_user(to,from,n)                         \
1258	        (__builtin_constant_p(n) ?                      \
1259	         __constant_copy_to_user((to),(from),(n)) :     \
1260	         __generic_copy_to_user((to),(from),(n)))
1261	  </programlisting>
1262	
1263	  <para>
1264	   <filename>arch/sparc/kernel/head.S:</filename>
1265	  </para>
1266	
1267	  <programlisting>
1268	/*
1269	 * Sun people can't spell worth damn. "compatability" indeed.
1270	 * At least we *know* we can't spell, and use a spell-checker.
1271	 */
1272	
1273	/* Uh, actually Linus it is I who cannot spell. Too much murky
1274	 * Sparc assembly will do this to ya.
1275	 */
1276	C_LABEL(cputypvar):
1277	        .asciz "compatibility"
1278	
1279	/* Tested on SS-5, SS-10. Probably someone at Sun applied a spell-checker. */
1280	        .align 4
1281	C_LABEL(cputypvar_sun4m):
1282	        .asciz "compatible"
1283	  </programlisting>
1284	
1285	  <para>
1286	   <filename>arch/sparc/lib/checksum.S:</filename>
1287	  </para>
1288	
1289	  <programlisting>
1290	        /* Sun, you just can't beat me, you just can't.  Stop trying,
1291	         * give up.  I'm serious, I am going to kick the living shit
1292	         * out of you, game over, lights out.
1293	         */
1294	  </programlisting>
1295	 </chapter>
1296	
1297	 <chapter id="credits">
1298	  <title>Thanks</title>
1299	
1300	  <para>
1301	   Thanks to Andi Kleen for the idea, answering my questions, fixing
1302	   my mistakes, filling content, etc.  Philipp Rumpf for more spelling
1303	   and clarity fixes, and some excellent non-obvious points.  Werner
1304	   Almesberger for giving me a great summary of
1305	   <function>disable_irq()</function>, and Jes Sorensen and Andrea
1306	   Arcangeli added caveats. Michael Elizabeth Chastain for checking
1307	   and adding to the Configure section. <!-- Rusty insisted on this
1308	   bit; I didn't do it! --> Telsa Gwynne for teaching me DocBook. 
1309	  </para>
1310	 </chapter>
1311	</book>
Hide Line Numbers


About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog