Documentation / virt / kvm / devices / arm-vgic-v3.rst


Based on kernel version 6.8. Page generated on 2024-03-11 21:26 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
.. SPDX-License-Identifier: GPL-2.0

==============================================================
ARM Virtual Generic Interrupt Controller v3 and later (VGICv3)
==============================================================


Device types supported:
  - KVM_DEV_TYPE_ARM_VGIC_V3     ARM Generic Interrupt Controller v3.0

Only one VGIC instance may be instantiated through this API.  The created VGIC
will act as the VM interrupt controller, requiring emulated user-space devices
to inject interrupts to the VGIC instead of directly to CPUs.  It is not
possible to create both a GICv3 and GICv2 on the same VM.

Creating a guest GICv3 device requires a host GICv3 as well.


Groups:
  KVM_DEV_ARM_VGIC_GRP_ADDR
   Attributes:

    KVM_VGIC_V3_ADDR_TYPE_DIST (rw, 64-bit)
      Base address in the guest physical address space of the GICv3 distributor
      register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.
      This address needs to be 64K aligned and the region covers 64 KByte.

    KVM_VGIC_V3_ADDR_TYPE_REDIST (rw, 64-bit)
      Base address in the guest physical address space of the GICv3
      redistributor register mappings. There are two 64K pages for each
      VCPU and all of the redistributor pages are contiguous.
      Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.
      This address needs to be 64K aligned.

    KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION (rw, 64-bit)
      The attribute data pointed to by kvm_device_attr.addr is a __u64 value::

        bits:     | 63   ....  52  |  51   ....   16 | 15 - 12  |11 - 0
        values:   |     count      |       base      |  flags   | index

      - index encodes the unique redistributor region index
      - flags: reserved for future use, currently 0
      - base field encodes bits [51:16] of the guest physical base address
        of the first redistributor in the region.
      - count encodes the number of redistributors in the region. Must be
        greater than 0.

      There are two 64K pages for each redistributor in the region and
      redistributors are laid out contiguously within the region. Regions
      are filled with redistributors in the index order. The sum of all
      region count fields must be greater than or equal to the number of
      VCPUs. Redistributor regions must be registered in the incremental
      index order, starting from index 0.

      The characteristics of a specific redistributor region can be read
      by presetting the index field in the attr data.
      Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.

  It is invalid to mix calls with KVM_VGIC_V3_ADDR_TYPE_REDIST and
  KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION attributes.

  Note that to obtain reproducible results (the same VCPU being associated
  with the same redistributor across a save/restore operation), VCPU creation
  order, redistributor region creation order as well as the respective
  interleaves of VCPU and region creation MUST be preserved.  Any change in
  either ordering may result in a different vcpu_id/redistributor association,
  resulting in a VM that will fail to run at restore time.

  Errors:

    =======  =============================================================
    -E2BIG   Address outside of addressable IPA range
    -EINVAL  Incorrectly aligned address, bad redistributor region
             count/index, mixed redistributor region attribute usage
    -EEXIST  Address already configured
    -ENOENT  Attempt to read the characteristics of a non existing
             redistributor region
    -ENXIO   The group or attribute is unknown/unsupported for this device
             or hardware support is missing.
    -EFAULT  Invalid user pointer for attr->addr.
    =======  =============================================================


  KVM_DEV_ARM_VGIC_GRP_DIST_REGS, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS
   Attributes:

    The attr field of kvm_device_attr encodes two values::

      bits:     | 63   ....  32  |  31   ....    0 |
      values:   |      mpidr     |      offset     |

    All distributor regs are (rw, 32-bit) and kvm_device_attr.addr points to a
    __u32 value.  64-bit registers must be accessed by separately accessing the
    lower and higher word.

    Writes to read-only registers are ignored by the kernel.

    KVM_DEV_ARM_VGIC_GRP_DIST_REGS accesses the main distributor registers.
    KVM_DEV_ARM_VGIC_GRP_REDIST_REGS accesses the redistributor of the CPU
    specified by the mpidr.

    The offset is relative to the "[Re]Distributor base address" as defined
    in the GICv3/4 specs.  Getting or setting such a register has the same
    effect as reading or writing the register on real hardware, except for the
    following registers: GICD_STATUSR, GICR_STATUSR, GICD_ISPENDR,
    GICR_ISPENDR0, GICD_ICPENDR, and GICR_ICPENDR0.  These registers behave
    differently when accessed via this interface compared to their
    architecturally defined behavior to allow software a full view of the
    VGIC's internal state.

    The mpidr field is used to specify which
    redistributor is accessed.  The mpidr is ignored for the distributor.

    The mpidr encoding is based on the affinity information in the
    architecture defined MPIDR, and the field is encoded as follows::

      | 63 .... 56 | 55 .... 48 | 47 .... 40 | 39 .... 32 |
      |    Aff3    |    Aff2    |    Aff1    |    Aff0    |

    Note that distributor fields are not banked, but return the same value
    regardless of the mpidr used to access the register.

    GICD_IIDR.Revision is updated when the KVM implementation is changed in a
    way directly observable by the guest or userspace.  Userspace should read
    GICD_IIDR from KVM and write back the read value to confirm its expected
    behavior is aligned with the KVM implementation.  Userspace should set
    GICD_IIDR before setting any other registers to ensure the expected
    behavior.


    The GICD_STATUSR and GICR_STATUSR registers are architecturally defined such
    that a write of a clear bit has no effect, whereas a write with a set bit
    clears that value.  To allow userspace to freely set the values of these two
    registers, setting the attributes with the register offsets for these two
    registers simply sets the non-reserved bits to the value written.


    Accesses (reads and writes) to the GICD_ISPENDR register region and
    GICR_ISPENDR0 registers get/set the value of the latched pending state for
    the interrupts.

    This is identical to the value returned by a guest read from ISPENDR for an
    edge triggered interrupt, but may differ for level triggered interrupts.
    For edge triggered interrupts, once an interrupt becomes pending (whether
    because of an edge detected on the input line or because of a guest write
    to ISPENDR) this state is "latched", and only cleared when either the
    interrupt is activated or when the guest writes to ICPENDR. A level
    triggered interrupt may be pending either because the level input is held
    high by a device, or because of a guest write to the ISPENDR register. Only
    ISPENDR writes are latched; if the device lowers the line level then the
    interrupt is no longer pending unless the guest also wrote to ISPENDR, and
    conversely writes to ICPENDR or activations of the interrupt do not clear
    the pending status if the line level is still being held high.  (These
    rules are documented in the GICv3 specification descriptions of the ICPENDR
    and ISPENDR registers.) For a level triggered interrupt the value accessed
    here is that of the latch which is set by ISPENDR and cleared by ICPENDR or
    interrupt activation, whereas the value returned by a guest read from
    ISPENDR is the logical OR of the latch value and the input line level.

    Raw access to the latch state is provided to userspace so that it can save
    and restore the entire GIC internal state (which is defined by the
    combination of the current input line level and the latch state, and cannot
    be deduced from purely the line level and the value of the ISPENDR
    registers).

    Accesses to GICD_ICPENDR register region and GICR_ICPENDR0 registers have
    RAZ/WI semantics, meaning that reads always return 0 and writes are always
    ignored.

  Errors:

    ======  =====================================================
    -ENXIO  Getting or setting this register is not yet supported
    -EBUSY  One or more VCPUs are running
    ======  =====================================================


  KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS
   Attributes:

    The attr field of kvm_device_attr encodes two values::

      bits:     | 63      ....       32 | 31  ....  16 | 15  ....  0 |
      values:   |         mpidr         |      RES     |    instr    |

    The mpidr field encodes the CPU ID based on the affinity information in the
    architecture defined MPIDR, and the field is encoded as follows::

      | 63 .... 56 | 55 .... 48 | 47 .... 40 | 39 .... 32 |
      |    Aff3    |    Aff2    |    Aff1    |    Aff0    |

    The instr field encodes the system register to access based on the fields
    defined in the A64 instruction set encoding for system register access
    (RES means the bits are reserved for future use and should be zero)::

      | 15 ... 14 | 13 ... 11 | 10 ... 7 | 6 ... 3 | 2 ... 0 |
      |   Op 0    |    Op1    |    CRn   |   CRm   |   Op2   |

    All system regs accessed through this API are (rw, 64-bit) and
    kvm_device_attr.addr points to a __u64 value.

    KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS accesses the CPU interface registers for the
    CPU specified by the mpidr field.

    CPU interface registers access is not implemented for AArch32 mode.
    Error -ENXIO is returned when accessed in AArch32 mode.

  Errors:

    =======  =====================================================
    -ENXIO   Getting or setting this register is not yet supported
    -EBUSY   VCPU is running
    -EINVAL  Invalid mpidr or register value supplied
    =======  =====================================================


  KVM_DEV_ARM_VGIC_GRP_NR_IRQS
   Attributes:

    A value describing the number of interrupts (SGI, PPI and SPI) for
    this GIC instance, ranging from 64 to 1024, in increments of 32.

    kvm_device_attr.addr points to a __u32 value.

  Errors:

    =======  ======================================
    -EINVAL  Value set is out of the expected range
    -EBUSY   Value has already be set.
    =======  ======================================


  KVM_DEV_ARM_VGIC_GRP_CTRL
   Attributes:

    KVM_DEV_ARM_VGIC_CTRL_INIT
      request the initialization of the VGIC, no additional parameter in
      kvm_device_attr.addr. Must be called after all VCPUs have been created.
    KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES
      save all LPI pending bits into guest RAM pending tables.

      The first kB of the pending table is not altered by this operation.

  Errors:

    =======  ========================================================
    -ENXIO   VGIC not properly configured as required prior to calling
             this attribute
    -ENODEV  no online VCPU
    -ENOMEM  memory shortage when allocating vgic internal data
    -EFAULT  Invalid guest ram access
    -EBUSY   One or more VCPUS are running
    =======  ========================================================


  KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO
   Attributes:

    The attr field of kvm_device_attr encodes the following values::

      bits:     | 63      ....       32 | 31   ....    10 | 9  ....  0 |
      values:   |         mpidr         |      info       |   vINTID   |

    The vINTID specifies which set of IRQs is reported on.

    The info field specifies which information userspace wants to get or set
    using this interface.  Currently we support the following info values:

      VGIC_LEVEL_INFO_LINE_LEVEL:
	Get/Set the input level of the IRQ line for a set of 32 contiguously
	numbered interrupts.

	vINTID must be a multiple of 32.

	kvm_device_attr.addr points to a __u32 value which will contain a
	bitmap where a set bit means the interrupt level is asserted.

	Bit[n] indicates the status for interrupt vINTID + n.

    SGIs and any interrupt with a higher ID than the number of interrupts
    supported, will be RAZ/WI.  LPIs are always edge-triggered and are
    therefore not supported by this interface.

    PPIs are reported per VCPU as specified in the mpidr field, and SPIs are
    reported with the same value regardless of the mpidr specified.

    The mpidr field encodes the CPU ID based on the affinity information in the
    architecture defined MPIDR, and the field is encoded as follows::

      | 63 .... 56 | 55 .... 48 | 47 .... 40 | 39 .... 32 |
      |    Aff3    |    Aff2    |    Aff1    |    Aff0    |

  Errors:

    =======  =============================================
    -EINVAL  vINTID is not multiple of 32 or info field is
	     not VGIC_LEVEL_INFO_LINE_LEVEL
    =======  =============================================