Documentation / i2c / i2c-sysfs.rst

Based on kernel version 6.10. Page generated on 2024-07-16 09:00 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
.. SPDX-License-Identifier: GPL-2.0

Linux I2C Sysfs


I2C topology can be complex because of the existence of I2C MUX
(I2C Multiplexer). The Linux
kernel abstracts the MUX channels into logical I2C bus numbers. However, there
is a gap of knowledge to map from the I2C bus physical number and MUX topology
to logical I2C bus number. This doc is aimed to fill in this gap, so the
audience (hardware engineers and new software developers for example) can learn
the concept of logical I2C buses in the kernel, by knowing the physical I2C
topology and navigating through the I2C sysfs in Linux shell. This knowledge is
useful and essential to use ``i2c-tools`` for the purpose of development and

Target audience

People who need to use Linux shell to interact with I2C subsystem on a system
which the Linux is running on.


1.  Knowledge of general Linux shell file system commands and operations.

2.  General knowledge of I2C, I2C MUX and I2C topology.

Location of I2C Sysfs

Typically, the Linux Sysfs filesystem is mounted at the ``/sys`` directory,
so you can find the I2C Sysfs under ``/sys/bus/i2c/devices``
where you can directly ``cd`` to it.
There is a list of symbolic links under that directory. The links that
start with ``i2c-`` are I2C buses, which may be either physical or logical. The
other links that begin with numbers and end with numbers are I2C devices, where
the first number is I2C bus number, and the second number is I2C address.

Google Pixel 3 phone for example::

  blueline:/sys/bus/i2c/devices $ ls
  0-0008  0-0061  1-0028  3-0043  4-0036  4-0041  i2c-1  i2c-3
  0-000c  0-0066  2-0049  4-000b  4-0040  i2c-0   i2c-2  i2c-4

``i2c-2`` is an I2C bus whose number is 2, and ``2-0049`` is an I2C device
on bus 2 address 0x49 bound with a kernel driver.


First, let us define some terms to avoid confusion in later sections.

(Physical) I2C Bus Controller

The hardware system that the Linux kernel is running on may have multiple
physical I2C bus controllers. The controllers are hardware and physical, and the
system may define multiple registers in the memory space to manipulate the
controllers. Linux kernel has I2C bus drivers under source directory
``drivers/i2c/busses`` to translate kernel I2C API into register
operations for different systems. This terminology is not limited to Linux
kernel only.

I2C Bus Physical Number

For each physical I2C bus controller, the system vendor may assign a physical
number to each controller. For example, the first I2C bus controller which has
the lowest register addresses may be called ``I2C-0``.

Logical I2C Bus

Every I2C bus number you see in Linux I2C Sysfs is a logical I2C bus with a
number assigned. This is similar to the fact that software code is usually
written upon virtual memory space, instead of physical memory space.

Each logical I2C bus may be an abstraction of a physical I2C bus controller, or
an abstraction of a channel behind an I2C MUX. In case it is an abstraction of a
MUX channel, whenever we access an I2C device via a such logical bus, the kernel
will switch the I2C MUX for you to the proper channel as part of the

Physical I2C Bus

If the logical I2C bus is a direct abstraction of a physical I2C bus controller,
let us call it a physical I2C bus.


This may be a confusing part for people who only know about the physical I2C
design of a board. It is actually possible to rename the I2C bus physical number
to a different number in logical I2C bus level in Device Tree Source (DTS) under
section ``aliases``. See ``arch/arm/boot/dts/nuvoton-npcm730-gsj.dts``
for an example of DTS file.

Best Practice: **(To kernel software developers)** It is better to keep the I2C
bus physical number the same as their corresponding logical I2C bus number,
instead of renaming or mapping them, so that it may be less confusing to other
users. These physical I2C buses can be served as good starting points for I2C
MUX fanouts. For the following examples, we will assume that the physical I2C
bus has a number same as their I2C bus physical number.

Walk through Logical I2C Bus

For the following content, we will use a more complex I2C topology as an
example. Here is a brief graph for the I2C topology. If you do not understand
this graph at first glance, do not be afraid to continue reading this doc
and review it when you finish reading.


  i2c-7 (physical I2C bus controller 7)
  `-- 7-0071 (4-channel I2C MUX at 0x71)
      |-- i2c-60 (channel-0)
      |-- i2c-73 (channel-1)
      |   |-- 73-0040 (I2C sensor device with hwmon directory)
      |   |-- 73-0070 (I2C MUX at 0x70, exists in DTS, but failed to probe)
      |   `-- 73-0072 (8-channel I2C MUX at 0x72)
      |       |-- i2c-78 (channel-0)
      |       |-- ... (channel-1...6, i2c-79...i2c-84)
      |       `-- i2c-85 (channel-7)
      |-- i2c-86 (channel-2)
      `-- i2c-203 (channel-3)

Distinguish Physical and Logical I2C Bus

One simple way to distinguish between a physical I2C bus and a logical I2C bus,
is to read the symbolic link ``device`` under the I2C bus directory by using
command ``ls -l`` or ``readlink``.

An alternative symbolic link to check is ``mux_device``. This link only exists
in logical I2C bus directory which is fanned out from another I2C bus.
Reading this link will also tell you which I2C MUX device created
this logical I2C bus.

If the symbolic link points to a directory ending with ``.i2c``, it should be a
physical I2C bus, directly abstracting a physical I2C bus controller. For

  $ readlink /sys/bus/i2c/devices/i2c-7/device
  $ ls /sys/bus/i2c/devices/i2c-7/mux_device
  ls: /sys/bus/i2c/devices/i2c-7/mux_device: No such file or directory

In this case, ``i2c-7`` is a physical I2C bus, so it does not have the symbolic
link ``mux_device`` under its directory. And if the kernel software developer
follows the common practice by not renaming physical I2C buses, this should also
mean the physical I2C bus controller 7 of the system.

On the other hand, if the symbolic link points to another I2C bus, the I2C bus
presented by the current directory has to be a logical bus. The I2C bus pointed
by the link is the parent bus which may be either a physical I2C bus or a
logical one. In this case, the I2C bus presented by the current directory
abstracts an I2C MUX channel under the parent bus.

For example::

  $ readlink /sys/bus/i2c/devices/i2c-73/device
  $ readlink /sys/bus/i2c/devices/i2c-73/mux_device

``i2c-73`` is a logical bus fanout by an I2C MUX under ``i2c-7``
whose I2C address is 0x71.
Whenever we access an I2C device with bus 73, the kernel will always
switch the I2C MUX addressed 0x71 to the proper channel for you as part of the

Finding out Logical I2C Bus Number

In this section, we will describe how to find out the logical I2C bus number
representing certain I2C MUX channels based on the knowledge of physical
hardware I2C topology.

In this example, we have a system which has a physical I2C bus 7 and not renamed
in DTS. There is a 4-channel MUX at address 0x71 on that bus. There is another
8-channel MUX at address 0x72 behind the channel 1 of the 0x71 MUX. Let us
navigate through Sysfs and find out the logical I2C bus number of the channel 3
of the 0x72 MUX.

First of all, let us go to the directory of ``i2c-7``::

  ~$ cd /sys/bus/i2c/devices/i2c-7
  /sys/bus/i2c/devices/i2c-7$ ls
  7-0071         i2c-60         name           subsystem
  delete_device  i2c-73         new_device     uevent
  device         i2c-86         of_node
  i2c-203        i2c-dev        power

There, we see the 0x71 MUX as ``7-0071``. Go inside it::

  /sys/bus/i2c/devices/i2c-7$ cd 7-0071/
  /sys/bus/i2c/devices/i2c-7/7-0071$ ls -l
  channel-0   channel-3   modalias    power
  channel-1   driver      name        subsystem
  channel-2   idle_state  of_node     uevent

Read the link ``channel-1`` using ``readlink`` or ``ls -l``::

  /sys/bus/i2c/devices/i2c-7/7-0071$ readlink channel-1

We find out that the channel 1 of 0x71 MUX on ``i2c-7`` is assigned
with a logical I2C bus number of 73.
Let us continue the journey to directory ``i2c-73`` in either ways::

  # cd to i2c-73 under I2C Sysfs root
  /sys/bus/i2c/devices/i2c-7/7-0071$ cd /sys/bus/i2c/devices/i2c-73

  # cd the channel symbolic link
  /sys/bus/i2c/devices/i2c-7/7-0071$ cd channel-1

  # cd the link content
  /sys/bus/i2c/devices/i2c-7/7-0071$ cd ../i2c-73

Either ways, you will end up in the directory of ``i2c-73``. Similar to above,
we can now find the 0x72 MUX and what logical I2C bus numbers
that its channels are assigned::

  /sys/bus/i2c/devices/i2c-73$ ls
  73-0040        device         i2c-83         new_device
  73-004e        i2c-78         i2c-84         of_node
  73-0050        i2c-79         i2c-85         power
  73-0070        i2c-80         i2c-dev        subsystem
  73-0072        i2c-81         mux_device     uevent
  delete_device  i2c-82         name
  /sys/bus/i2c/devices/i2c-73$ cd 73-0072
  /sys/bus/i2c/devices/i2c-73/73-0072$ ls
  channel-0   channel-4   driver      of_node
  channel-1   channel-5   idle_state  power
  channel-2   channel-6   modalias    subsystem
  channel-3   channel-7   name        uevent
  /sys/bus/i2c/devices/i2c-73/73-0072$ readlink channel-3

There, we find out the logical I2C bus number of the channel 3 of the 0x72 MUX
is 81. We can later use this number to switch to its own I2C Sysfs directory or
issue ``i2c-tools`` commands.

Tip: Once you understand the I2C topology with MUX, command
`i2cdetect -l
`I2C Tools
can give you
an overview of the I2C topology easily, if it is available on your system. For

  $ i2cdetect -l | grep -e '\-73' -e _7 | sort -V
  i2c-7   i2c             npcm_i2c_7                              I2C adapter
  i2c-73  i2c             i2c-7-mux (chan_id 1)                   I2C adapter
  i2c-78  i2c             i2c-73-mux (chan_id 0)                  I2C adapter
  i2c-79  i2c             i2c-73-mux (chan_id 1)                  I2C adapter
  i2c-80  i2c             i2c-73-mux (chan_id 2)                  I2C adapter
  i2c-81  i2c             i2c-73-mux (chan_id 3)                  I2C adapter
  i2c-82  i2c             i2c-73-mux (chan_id 4)                  I2C adapter
  i2c-83  i2c             i2c-73-mux (chan_id 5)                  I2C adapter
  i2c-84  i2c             i2c-73-mux (chan_id 6)                  I2C adapter
  i2c-85  i2c             i2c-73-mux (chan_id 7)                  I2C adapter

Pinned Logical I2C Bus Number

If not specified in DTS, when an I2C MUX driver is applied and the MUX device is
successfully probed, the kernel will assign the MUX channels with a logical bus
number based on the current biggest logical bus number incrementally. For
example, if the system has ``i2c-15`` as the highest logical bus number, and a
4-channel MUX is applied successfully, we will have ``i2c-16`` for the
MUX channel 0, and all the way to ``i2c-19`` for the MUX channel 3.

The kernel software developer is able to pin the fanout MUX channels to a static
logical I2C bus number in the DTS. This doc will not go through the details on
how to implement this in DTS, but we can see an example in:

In the above example, there is an 8-channel I2C MUX at address 0x70 on physical
I2C bus 2. The channel 2 of the MUX is defined as ``imux18`` in DTS,
and pinned to logical I2C bus number 18 with the line of ``i2c18 = &imux18;``
in section ``aliases``.

Take it further, it is possible to design a logical I2C bus number schema that
can be easily remembered by humans or calculated arithmetically. For example, we
can pin the fanout channels of a MUX on bus 3 to start at 30. So 30 will be the
logical bus number of the channel 0 of the MUX on bus 3, and 37 will be the
logical bus number of the channel 7 of the MUX on bus 3.

I2C Devices

In previous sections, we mostly covered the I2C bus. In this section, let us see
what we can learn from the I2C device directory whose link name is in the format
of ``${bus}-${addr}``. The ``${bus}`` part in the name is a logical I2C bus
decimal number, while the ``${addr}`` part is a hex number of the I2C address
of each device.

I2C Device Directory Content

Inside each I2C device directory, there is a file named ``name``.
This file tells what device name it was used for the kernel driver to
probe this device. Use command ``cat`` to read its content. For example::

  /sys/bus/i2c/devices/i2c-73$ cat 73-0040/name
  /sys/bus/i2c/devices/i2c-73$ cat 73-0070/name
  /sys/bus/i2c/devices/i2c-73$ cat 73-0072/name

There is a symbolic link named ``driver`` to tell what Linux kernel driver was
used to probe this device::

  /sys/bus/i2c/devices/i2c-73$ readlink -f 73-0040/driver
  /sys/bus/i2c/devices/i2c-73$ readlink -f 73-0072/driver

But if the link ``driver`` does not exist at the first place,
it may mean that the kernel driver failed to probe this device due to
some errors. The error may be found in ``dmesg``::

  /sys/bus/i2c/devices/i2c-73$ ls 73-0070/driver
  ls: 73-0070/driver: No such file or directory
  /sys/bus/i2c/devices/i2c-73$ dmesg | grep 73-0070
  pca954x 73-0070: probe failed
  pca954x 73-0070: probe failed

Depending on what the I2C device is and what kernel driver was used to probe the
device, we may have different content in the device directory.

I2C MUX Device

While you may be already aware of this in previous sections, an I2C MUX device
will have symbolic link ``channel-*`` inside its device directory.
These symbolic links point to their logical I2C bus directories::

  /sys/bus/i2c/devices/i2c-73$ ls -l 73-0072/channel-*
  lrwxrwxrwx ... 73-0072/channel-0 -> ../i2c-78
  lrwxrwxrwx ... 73-0072/channel-1 -> ../i2c-79
  lrwxrwxrwx ... 73-0072/channel-2 -> ../i2c-80
  lrwxrwxrwx ... 73-0072/channel-3 -> ../i2c-81
  lrwxrwxrwx ... 73-0072/channel-4 -> ../i2c-82
  lrwxrwxrwx ... 73-0072/channel-5 -> ../i2c-83
  lrwxrwxrwx ... 73-0072/channel-6 -> ../i2c-84
  lrwxrwxrwx ... 73-0072/channel-7 -> ../i2c-85

I2C Sensor Device / Hwmon

I2C sensor device is also common to see. If they are bound by a kernel hwmon
(Hardware Monitoring) driver successfully, you will see a ``hwmon`` directory
inside the I2C device directory. Keep digging into it, you will find the Hwmon
Sysfs for the I2C sensor device::

  /sys/bus/i2c/devices/i2c-73/73-0040/hwmon/hwmon17$ ls
  curr1_input        in0_lcrit_alarm    name               subsystem
  device             in1_crit           power              uevent
  in0_crit           in1_crit_alarm     power1_crit        update_interval
  in0_crit_alarm     in1_input          power1_crit_alarm
  in0_input          in1_lcrit          power1_input
  in0_lcrit          in1_lcrit_alarm    shunt_resistor

For more info on the Hwmon Sysfs, refer to the doc:


Instantiate I2C Devices in I2C Sysfs

Refer to section "Method 4: Instantiate from user-space" of instantiating-devices.rst