Based on kernel version 6.15
. Page generated on 2025-05-29 09:09 EST
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | .. SPDX-License-Identifier: (GPL-2.0+ OR MIT) ========= Task List ========= Tasks may have the following fields: - ``Complexity``: Describes the required familiarity with Rust and / or the corresponding kernel APIs or subsystems. There are four different complexities, ``Beginner``, ``Intermediate``, ``Advanced`` and ``Expert``. - ``Reference``: References to other tasks. - ``Link``: Links to external resources. - ``Contact``: The person that can be contacted for further information about the task. Enablement (Rust) ================= Tasks that are not directly related to nova-core, but are preconditions in terms of required APIs. FromPrimitive API ----------------- Sometimes the need arises to convert a number to a value of an enum or a structure. A good example from nova-core would be the ``Chipset`` enum type, which defines the value ``AD102``. When probing the GPU the value ``0x192`` can be read from a certain register indication the chipset AD102. Hence, the enum value ``AD102`` should be derived from the number ``0x192``. Currently, nova-core uses a custom implementation (``Chipset::from_u32`` for this. Instead, it would be desirable to have something like the ``FromPrimitive`` trait [1] from the num crate. Having this generalization also helps with implementing a generic macro that automatically generates the corresponding mappings between a value and a number. | Complexity: Beginner | Link: https://docs.rs/num/latest/num/trait.FromPrimitive.html Generic register abstraction ---------------------------- Work out how register constants and structures can be automatically generated through generalized macros. Example: .. code-block:: rust register!(BOOT0, 0x0, u32, pci::Bar<SIZE>, Fields [ MINOR_REVISION(3:0, RO), MAJOR_REVISION(7:4, RO), REVISION(7:0, RO), // Virtual register combining major and minor rev. ]) This could expand to something like: .. code-block:: rust const BOOT0_OFFSET: usize = 0x00000000; const BOOT0_MINOR_REVISION_SHIFT: u8 = 0; const BOOT0_MINOR_REVISION_MASK: u32 = 0x0000000f; const BOOT0_MAJOR_REVISION_SHIFT: u8 = 4; const BOOT0_MAJOR_REVISION_MASK: u32 = 0x000000f0; const BOOT0_REVISION_SHIFT: u8 = BOOT0_MINOR_REVISION_SHIFT; const BOOT0_REVISION_MASK: u32 = BOOT0_MINOR_REVISION_MASK | BOOT0_MAJOR_REVISION_MASK; struct Boot0(u32); impl Boot0 { #[inline] fn read(bar: &RevocableGuard<'_, pci::Bar<SIZE>>) -> Self { Self(bar.readl(BOOT0_OFFSET)) } #[inline] fn minor_revision(&self) -> u32 { (self.0 & BOOT0_MINOR_REVISION_MASK) >> BOOT0_MINOR_REVISION_SHIFT } #[inline] fn major_revision(&self) -> u32 { (self.0 & BOOT0_MAJOR_REVISION_MASK) >> BOOT0_MAJOR_REVISION_SHIFT } #[inline] fn revision(&self) -> u32 { (self.0 & BOOT0_REVISION_MASK) >> BOOT0_REVISION_SHIFT } } Usage: .. code-block:: rust let bar = bar.try_access().ok_or(ENXIO)?; let boot0 = Boot0::read(&bar); pr_info!("Revision: {}\n", boot0.revision()); | Complexity: Advanced Delay / Sleep abstractions -------------------------- Rust abstractions for the kernel's delay() and sleep() functions. FUJITA Tomonori plans to work on abstractions for read_poll_timeout_atomic() (and friends) [1]. | Complexity: Beginner | Link: https://lore.kernel.org/netdev/20250228.080550.354359820929821928.fujita.tomonori@gmail.com/ [1] IRQ abstractions ---------------- Rust abstractions for IRQ handling. There is active ongoing work from Daniel Almeida [1] for the "core" abstractions to request IRQs. Besides optional review and testing work, the required ``pci::Device`` code around those core abstractions needs to be worked out. | Complexity: Intermediate | Link: https://lore.kernel.org/lkml/20250122163932.46697-1-daniel.almeida@collabora.com/ [1] | Contact: Daniel Almeida Page abstraction for foreign pages ---------------------------------- Rust abstractions for pages not created by the Rust page abstraction without direct ownership. There is active onging work from Abdiel Janulgue [1] and Lina [2]. | Complexity: Advanced | Link: https://lore.kernel.org/linux-mm/20241119112408.779243-1-abdiel.janulgue@gmail.com/ [1] | Link: https://lore.kernel.org/rust-for-linux/20250202-rust-page-v1-0-e3170d7fe55e@asahilina.net/ [2] Scatterlist / sg_table abstractions ----------------------------------- Rust abstractions for scatterlist / sg_table. There is preceding work from Abdiel Janulgue, which hasn't made it to the mailing list yet. | Complexity: Intermediate | Contact: Abdiel Janulgue ELF utils --------- Rust implementation of ELF header representation to retrieve section header tables, names, and data from an ELF-formatted images. There is preceding work from Abdiel Janulgue, which hasn't made it to the mailing list yet. | Complexity: Beginner | Contact: Abdiel Janulgue PCI MISC APIs ------------- Extend the existing PCI device / driver abstractions by SR-IOV, config space, capability, MSI API abstractions. | Complexity: Beginner Auxiliary bus abstractions -------------------------- Rust abstraction for the auxiliary bus APIs. This is needed to connect nova-core to the nova-drm driver. | Complexity: Intermediate Debugfs abstractions -------------------- Rust abstraction for debugfs APIs. | Reference: Export GSP log buffers | Complexity: Intermediate Vec extensions -------------- Implement ``Vec::truncate`` and ``Vec::resize``. Currently this is used for some experimental code to parse the vBIOS. | Reference vBIOS support | Complexity: Beginner GPU (general) ============= Parse firmware headers ---------------------- Parse ELF headers from the firmware files loaded from the filesystem. | Reference: ELF utils | Complexity: Beginner | Contact: Abdiel Janulgue Build radix3 page table ----------------------- Build the radix3 page table to map the firmware. | Complexity: Intermediate | Contact: Abdiel Janulgue vBIOS support ------------- Parse the vBIOS and probe the structures required for driver initialization. | Contact: Dave Airlie | Reference: Vec extensions | Complexity: Intermediate Initial Devinit support ----------------------- Implement BIOS Device Initialization, i.e. memory sizing, waiting, PLL configuration. | Contact: Dave Airlie | Complexity: Beginner Boot Falcon controller ---------------------- Infrastructure to load and execute falcon (sec2) firmware images; handle the GSP falcon processor and fwsec loading. | Complexity: Advanced | Contact: Dave Airlie GPU Timer support ----------------- Support for the GPU's internal timer peripheral. | Complexity: Beginner | Contact: Dave Airlie MMU / PT management ------------------- Work out the architecture for MMU / page table management. We need to consider that nova-drm will need rather fine-grained control, especially in terms of locking, in order to be able to implement asynchronous Vulkan queues. While generally sharing the corresponding code is desirable, it needs to be evaluated how (and if at all) sharing the corresponding code is expedient. | Complexity: Expert VRAM memory allocator --------------------- Investigate options for a VRAM memory allocator. Some possible options: - Rust abstractions for - RB tree (interval tree) / drm_mm - maple_tree - native Rust collections | Complexity: Advanced Instance Memory --------------- Implement support for instmem (bar2) used to store page tables. | Complexity: Intermediate | Contact: Dave Airlie GPU System Processor (GSP) ========================== Export GSP log buffers ---------------------- Recent patches from Timur Tabi [1] added support to expose GSP-RM log buffers (even after failure to probe the driver) through debugfs. This is also an interesting feature for nova-core, especially in the early days. | Link: https://lore.kernel.org/nouveau/20241030202952.694055-2-ttabi@nvidia.com/ [1] | Reference: Debugfs abstractions | Complexity: Intermediate GSP firmware abstraction ------------------------ The GSP-RM firmware API is unstable and may incompatibly change from version to version, in terms of data structures and semantics. This problem is one of the big motivations for using Rust for nova-core, since it turns out that Rust's procedural macro feature provides a rather elegant way to address this issue: 1. generate Rust structures from the C headers in a separate namespace per version 2. build abstraction structures (within a generic namespace) that implement the firmware interfaces; annotate the differences in implementation with version identifiers 3. use a procedural macro to generate the actual per version implementation out of this abstraction 4. instantiate the correct version type one on runtime (can be sure that all have the same interface because it's defined by a common trait) There is a PoC implementation of this pattern, in the context of the nova-core PoC driver. This task aims at refining the feature and ideally generalize it, to be usable by other drivers as well. | Complexity: Expert GSP message queue ----------------- Implement low level GSP message queue (command, status) for communication between the kernel driver and GSP. | Complexity: Advanced | Contact: Dave Airlie Bootstrap GSP ------------- Call the boot firmware to boot the GSP processor; execute initial control messages. | Complexity: Intermediate | Contact: Dave Airlie Client / Device APIs -------------------- Implement the GSP message interface for client / device allocation and the corresponding client and device allocation APIs. | Complexity: Intermediate | Contact: Dave Airlie Bar PDE handling ---------------- Synchronize page table handling for BARs between the kernel driver and GSP. | Complexity: Beginner | Contact: Dave Airlie FIFO engine ----------- Implement support for the FIFO engine, i.e. the corresponding GSP message interface and provide an API for chid allocation and channel handling. | Complexity: Advanced | Contact: Dave Airlie GR engine --------- Implement support for the graphics engine, i.e. the corresponding GSP message interface and provide an API for (golden) context creation and promotion. | Complexity: Advanced | Contact: Dave Airlie CE engine --------- Implement support for the copy engine, i.e. the corresponding GSP message interface. | Complexity: Intermediate | Contact: Dave Airlie VFN IRQ controller ------------------ Support for the VFN interrupt controller. | Complexity: Intermediate | Contact: Dave Airlie External APIs ============= nova-core base API ------------------ Work out the common pieces of the API to connect 2nd level drivers, i.e. vGPU manager and nova-drm. | Complexity: Advanced vGPU manager API ---------------- Work out the API parts required by the vGPU manager, which are not covered by the base API. | Complexity: Advanced nova-core C API --------------- Implement a C wrapper for the APIs required by the vGPU manager driver. | Complexity: Intermediate Testing ======= CI pipeline ----------- Investigate option for continuous integration testing. This can go from as simple as running KUnit tests over running (graphics) CTS to booting up (multiple) guest VMs to test VFIO use-cases. It might also be worth to consider the introduction of a new test suite directly sitting on top of the uAPI for more targeted testing and debugging. There may be options for collaboration / shared code with the Mesa project. | Complexity: Advanced |