Documentation / filesystems / caching / object.rst


Based on kernel version 5.10.1. Page generated on 2020-12-14 21:14 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
.. SPDX-License-Identifier: GPL-2.0

====================================================
In-Kernel Cache Object Representation and Management
====================================================

By: David Howells <dhowells@redhat.com>

.. Contents:

 (*) Representation

 (*) Object management state machine.

     - Provision of cpu time.
     - Locking simplification.

 (*) The set of states.

 (*) The set of events.


Representation
==============

FS-Cache maintains an in-kernel representation of each object that a netfs is
currently interested in.  Such objects are represented by the fscache_cookie
struct and are referred to as cookies.

FS-Cache also maintains a separate in-kernel representation of the objects that
a cache backend is currently actively caching.  Such objects are represented by
the fscache_object struct.  The cache backends allocate these upon request, and
are expected to embed them in their own representations.  These are referred to
as objects.

There is a 1:N relationship between cookies and objects.  A cookie may be
represented by multiple objects - an index may exist in more than one cache -
or even by no objects (it may not be cached).

Furthermore, both cookies and objects are hierarchical.  The two hierarchies
correspond, but the cookies tree is a superset of the union of the object trees
of multiple caches::

	    NETFS INDEX TREE               :      CACHE 1     :      CACHE 2
	                                   :                  :
	                                   :   +-----------+  :
	                          +----------->|  IObject  |  :
	      +-----------+       |        :   +-----------+  :
	      |  ICookie  |-------+        :         |        :
	      +-----------+       |        :         |        :   +-----------+
	            |             +------------------------------>|  IObject  |
	            |                      :         |        :   +-----------+
	            |                      :         V        :         |
	            |                      :   +-----------+  :         |
	            V             +----------->|  IObject  |  :         |
	      +-----------+       |        :   +-----------+  :         |
	      |  ICookie  |-------+        :         |        :         V
	      +-----------+       |        :         |        :   +-----------+
	            |             +------------------------------>|  IObject  |
	      +-----+-----+                :         |        :   +-----------+
	      |           |                :         |        :         |
	      V           |                :         V        :         |
	+-----------+     |                :   +-----------+  :         |
	|  ICookie  |------------------------->|  IObject  |  :         |
	+-----------+     |                :   +-----------+  :         |
	      |           V                :         |        :         V
	      |     +-----------+          :         |        :   +-----------+
	      |     |  ICookie  |-------------------------------->|  IObject  |
	      |     +-----------+          :         |        :   +-----------+
	      V           |                :         V        :         |
	+-----------+     |                :   +-----------+  :         |
	|  DCookie  |------------------------->|  DObject  |  :         |
	+-----------+     |                :   +-----------+  :         |
	                  |                :                  :         |
	          +-------+-------+        :                  :         |
	          |               |        :                  :         |
	          V               V        :                  :         V
	    +-----------+   +-----------+  :                  :   +-----------+
	    |  DCookie  |   |  DCookie  |------------------------>|  DObject  |
	    +-----------+   +-----------+  :                  :   +-----------+
	                                   :                  :

In the above illustration, ICookie and IObject represent indices and DCookie
and DObject represent data storage objects.  Indices may have representation in
multiple caches, but currently, non-index objects may not.  Objects of any type
may also be entirely unrepresented.

As far as the netfs API goes, the netfs is only actually permitted to see
pointers to the cookies.  The cookies themselves and any objects attached to
those cookies are hidden from it.


Object Management State Machine
===============================

Within FS-Cache, each active object is managed by its own individual state
machine.  The state for an object is kept in the fscache_object struct, in
object->state.  A cookie may point to a set of objects that are in different
states.

Each state has an action associated with it that is invoked when the machine
wakes up in that state.  There are four logical sets of states:

 (1) Preparation: states that wait for the parent objects to become ready.  The
     representations are hierarchical, and it is expected that an object must
     be created or accessed with respect to its parent object.

 (2) Initialisation: states that perform lookups in the cache and validate
     what's found and that create on disk any missing metadata.

 (3) Normal running: states that allow netfs operations on objects to proceed
     and that update the state of objects.

 (4) Termination: states that detach objects from their netfs cookies, that
     delete objects from disk, that handle disk and system errors and that free
     up in-memory resources.


In most cases, transitioning between states is in response to signalled events.
When a state has finished processing, it will usually set the mask of events in
which it is interested (object->event_mask) and relinquish the worker thread.
Then when an event is raised (by calling fscache_raise_event()), if the event
is not masked, the object will be queued for processing (by calling
fscache_enqueue_object()).


Provision of CPU Time
---------------------

The work to be done by the various states was given CPU time by the threads of
the slow work facility.  This was used in preference to the workqueue facility
because:

 (1) Threads may be completely occupied for very long periods of time by a
     particular work item.  These state actions may be doing sequences of
     synchronous, journalled disk accesses (lookup, mkdir, create, setxattr,
     getxattr, truncate, unlink, rmdir, rename).

 (2) Threads may do little actual work, but may rather spend a lot of time
     sleeping on I/O.  This means that single-threaded and 1-per-CPU-threaded
     workqueues don't necessarily have the right numbers of threads.


Locking Simplification
----------------------

Because only one worker thread may be operating on any particular object's
state machine at once, this simplifies the locking, particularly with respect
to disconnecting the netfs's representation of a cache object (fscache_cookie)
from the cache backend's representation (fscache_object) - which may be
requested from either end.


The Set of States
=================

The object state machine has a set of states that it can be in.  There are
preparation states in which the object sets itself up and waits for its parent
object to transit to a state that allows access to its children:

 (1) State FSCACHE_OBJECT_INIT.

     Initialise the object and wait for the parent object to become active.  In
     the cache, it is expected that it will not be possible to look an object
     up from the parent object, until that parent object itself has been looked
     up.

There are initialisation states in which the object sets itself up and accesses
disk for the object metadata:

 (2) State FSCACHE_OBJECT_LOOKING_UP.

     Look up the object on disk, using the parent as a starting point.
     FS-Cache expects the cache backend to probe the cache to see whether this
     object is represented there, and if it is, to see if it's valid (coherency
     management).

     The cache should call fscache_object_lookup_negative() to indicate lookup
     failure for whatever reason, and should call fscache_obtained_object() to
     indicate success.

     At the completion of lookup, FS-Cache will let the netfs go ahead with
     read operations, no matter whether the file is yet cached.  If not yet
     cached, read operations will be immediately rejected with ENODATA until
     the first known page is uncached - as to that point there can be no data
     to be read out of the cache for that file that isn't currently also held
     in the pagecache.

 (3) State FSCACHE_OBJECT_CREATING.

     Create an object on disk, using the parent as a starting point.  This
     happens if the lookup failed to find the object, or if the object's
     coherency data indicated what's on disk is out of date.  In this state,
     FS-Cache expects the cache to create

     The cache should call fscache_obtained_object() if creation completes
     successfully, fscache_object_lookup_negative() otherwise.

     At the completion of creation, FS-Cache will start processing write
     operations the netfs has queued for an object.  If creation failed, the
     write ops will be transparently discarded, and nothing recorded in the
     cache.

There are some normal running states in which the object spends its time
servicing netfs requests:

 (4) State FSCACHE_OBJECT_AVAILABLE.

     A transient state in which pending operations are started, child objects
     are permitted to advance from FSCACHE_OBJECT_INIT state, and temporary
     lookup data is freed.

 (5) State FSCACHE_OBJECT_ACTIVE.

     The normal running state.  In this state, requests the netfs makes will be
     passed on to the cache.

 (6) State FSCACHE_OBJECT_INVALIDATING.

     The object is undergoing invalidation.  When the state comes here, it
     discards all pending read, write and attribute change operations as it is
     going to clear out the cache entirely and reinitialise it.  It will then
     continue to the FSCACHE_OBJECT_UPDATING state.

 (7) State FSCACHE_OBJECT_UPDATING.

     The state machine comes here to update the object in the cache from the
     netfs's records.  This involves updating the auxiliary data that is used
     to maintain coherency.

And there are terminal states in which an object cleans itself up, deallocates
memory and potentially deletes stuff from disk:

 (8) State FSCACHE_OBJECT_LC_DYING.

     The object comes here if it is dying because of a lookup or creation
     error.  This would be due to a disk error or system error of some sort.
     Temporary data is cleaned up, and the parent is released.

 (9) State FSCACHE_OBJECT_DYING.

     The object comes here if it is dying due to an error, because its parent
     cookie has been relinquished by the netfs or because the cache is being
     withdrawn.

     Any child objects waiting on this one are given CPU time so that they too
     can destroy themselves.  This object waits for all its children to go away
     before advancing to the next state.

(10) State FSCACHE_OBJECT_ABORT_INIT.

     The object comes to this state if it was waiting on its parent in
     FSCACHE_OBJECT_INIT, but its parent died.  The object will destroy itself
     so that the parent may proceed from the FSCACHE_OBJECT_DYING state.

(11) State FSCACHE_OBJECT_RELEASING.
(12) State FSCACHE_OBJECT_RECYCLING.

     The object comes to one of these two states when dying once it is rid of
     all its children, if it is dying because the netfs relinquished its
     cookie.  In the first state, the cached data is expected to persist, and
     in the second it will be deleted.

(13) State FSCACHE_OBJECT_WITHDRAWING.

     The object transits to this state if the cache decides it wants to
     withdraw the object from service, perhaps to make space, but also due to
     error or just because the whole cache is being withdrawn.

(14) State FSCACHE_OBJECT_DEAD.

     The object transits to this state when the in-memory object record is
     ready to be deleted.  The object processor shouldn't ever see an object in
     this state.


The Set of Events
-----------------

There are a number of events that can be raised to an object state machine:

 FSCACHE_OBJECT_EV_UPDATE
     The netfs requested that an object be updated.  The state machine will ask
     the cache backend to update the object, and the cache backend will ask the
     netfs for details of the change through its cookie definition ops.

 FSCACHE_OBJECT_EV_CLEARED
     This is signalled in two circumstances:

     (a) when an object's last child object is dropped and

     (b) when the last operation outstanding on an object is completed.

     This is used to proceed from the dying state.

 FSCACHE_OBJECT_EV_ERROR
     This is signalled when an I/O error occurs during the processing of some
     object.

 FSCACHE_OBJECT_EV_RELEASE, FSCACHE_OBJECT_EV_RETIRE
     These are signalled when the netfs relinquishes a cookie it was using.
     The event selected depends on whether the netfs asks for the backing
     object to be retired (deleted) or retained.

 FSCACHE_OBJECT_EV_WITHDRAW
     This is signalled when the cache backend wants to withdraw an object.
     This means that the object will have to be detached from the netfs's
     cookie.

Because the withdrawing releasing/retiring events are all handled by the object
state machine, it doesn't matter if there's a collision with both ends trying
to sever the connection at the same time.  The state machine can just pick
which one it wants to honour, and that effects the other.