Documentation / arm64 / elf_hwcaps.rst


Based on kernel version 5.11. Page generated on 2021-02-15 21:58 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
.. _elf_hwcaps_index:

================
ARM64 ELF hwcaps
================

This document describes the usage and semantics of the arm64 ELF hwcaps.


1. Introduction
---------------

Some hardware or software features are only available on some CPU
implementations, and/or with certain kernel configurations, but have no
architected discovery mechanism available to userspace code at EL0. The
kernel exposes the presence of these features to userspace through a set
of flags called hwcaps, exposed in the auxilliary vector.

Userspace software can test for features by acquiring the AT_HWCAP or
AT_HWCAP2 entry of the auxiliary vector, and testing whether the relevant
flags are set, e.g.::

	bool floating_point_is_present(void)
	{
		unsigned long hwcaps = getauxval(AT_HWCAP);
		if (hwcaps & HWCAP_FP)
			return true;

		return false;
	}

Where software relies on a feature described by a hwcap, it should check
the relevant hwcap flag to verify that the feature is present before
attempting to make use of the feature.

Features cannot be probed reliably through other means. When a feature
is not available, attempting to use it may result in unpredictable
behaviour, and is not guaranteed to result in any reliable indication
that the feature is unavailable, such as a SIGILL.


2. Interpretation of hwcaps
---------------------------

The majority of hwcaps are intended to indicate the presence of features
which are described by architected ID registers inaccessible to
userspace code at EL0. These hwcaps are defined in terms of ID register
fields, and should be interpreted with reference to the definition of
these fields in the ARM Architecture Reference Manual (ARM ARM).

Such hwcaps are described below in the form::

    Functionality implied by idreg.field == val.

Such hwcaps indicate the availability of functionality that the ARM ARM
defines as being present when idreg.field has value val, but do not
indicate that idreg.field is precisely equal to val, nor do they
indicate the absence of functionality implied by other values of
idreg.field.

Other hwcaps may indicate the presence of features which cannot be
described by ID registers alone. These may be described without
reference to ID registers, and may refer to other documentation.


3. The hwcaps exposed in AT_HWCAP
---------------------------------

HWCAP_FP
    Functionality implied by ID_AA64PFR0_EL1.FP == 0b0000.

HWCAP_ASIMD
    Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0000.

HWCAP_EVTSTRM
    The generic timer is configured to generate events at a frequency of
    approximately 100KHz.

HWCAP_AES
    Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0001.

HWCAP_PMULL
    Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0010.

HWCAP_SHA1
    Functionality implied by ID_AA64ISAR0_EL1.SHA1 == 0b0001.

HWCAP_SHA2
    Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0001.

HWCAP_CRC32
    Functionality implied by ID_AA64ISAR0_EL1.CRC32 == 0b0001.

HWCAP_ATOMICS
    Functionality implied by ID_AA64ISAR0_EL1.Atomic == 0b0010.

HWCAP_FPHP
    Functionality implied by ID_AA64PFR0_EL1.FP == 0b0001.

HWCAP_ASIMDHP
    Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0001.

HWCAP_CPUID
    EL0 access to certain ID registers is available, to the extent
    described by Documentation/arm64/cpu-feature-registers.rst.

    These ID registers may imply the availability of features.

HWCAP_ASIMDRDM
    Functionality implied by ID_AA64ISAR0_EL1.RDM == 0b0001.

HWCAP_JSCVT
    Functionality implied by ID_AA64ISAR1_EL1.JSCVT == 0b0001.

HWCAP_FCMA
    Functionality implied by ID_AA64ISAR1_EL1.FCMA == 0b0001.

HWCAP_LRCPC
    Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0001.

HWCAP_DCPOP
    Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0001.

HWCAP_SHA3
    Functionality implied by ID_AA64ISAR0_EL1.SHA3 == 0b0001.

HWCAP_SM3
    Functionality implied by ID_AA64ISAR0_EL1.SM3 == 0b0001.

HWCAP_SM4
    Functionality implied by ID_AA64ISAR0_EL1.SM4 == 0b0001.

HWCAP_ASIMDDP
    Functionality implied by ID_AA64ISAR0_EL1.DP == 0b0001.

HWCAP_SHA512
    Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0010.

HWCAP_SVE
    Functionality implied by ID_AA64PFR0_EL1.SVE == 0b0001.

HWCAP_ASIMDFHM
   Functionality implied by ID_AA64ISAR0_EL1.FHM == 0b0001.

HWCAP_DIT
    Functionality implied by ID_AA64PFR0_EL1.DIT == 0b0001.

HWCAP_USCAT
    Functionality implied by ID_AA64MMFR2_EL1.AT == 0b0001.

HWCAP_ILRCPC
    Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0010.

HWCAP_FLAGM
    Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.

HWCAP_SSBS
    Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.

HWCAP_SB
    Functionality implied by ID_AA64ISAR1_EL1.SB == 0b0001.

HWCAP_PACA
    Functionality implied by ID_AA64ISAR1_EL1.APA == 0b0001 or
    ID_AA64ISAR1_EL1.API == 0b0001, as described by
    Documentation/arm64/pointer-authentication.rst.

HWCAP_PACG
    Functionality implied by ID_AA64ISAR1_EL1.GPA == 0b0001 or
    ID_AA64ISAR1_EL1.GPI == 0b0001, as described by
    Documentation/arm64/pointer-authentication.rst.

HWCAP2_DCPODP

    Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0010.

HWCAP2_SVE2

    Functionality implied by ID_AA64ZFR0_EL1.SVEVer == 0b0001.

HWCAP2_SVEAES

    Functionality implied by ID_AA64ZFR0_EL1.AES == 0b0001.

HWCAP2_SVEPMULL

    Functionality implied by ID_AA64ZFR0_EL1.AES == 0b0010.

HWCAP2_SVEBITPERM

    Functionality implied by ID_AA64ZFR0_EL1.BitPerm == 0b0001.

HWCAP2_SVESHA3

    Functionality implied by ID_AA64ZFR0_EL1.SHA3 == 0b0001.

HWCAP2_SVESM4

    Functionality implied by ID_AA64ZFR0_EL1.SM4 == 0b0001.

HWCAP2_FLAGM2

    Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0010.

HWCAP2_FRINT

    Functionality implied by ID_AA64ISAR1_EL1.FRINTTS == 0b0001.

HWCAP2_SVEI8MM

    Functionality implied by ID_AA64ZFR0_EL1.I8MM == 0b0001.

HWCAP2_SVEF32MM

    Functionality implied by ID_AA64ZFR0_EL1.F32MM == 0b0001.

HWCAP2_SVEF64MM

    Functionality implied by ID_AA64ZFR0_EL1.F64MM == 0b0001.

HWCAP2_SVEBF16

    Functionality implied by ID_AA64ZFR0_EL1.BF16 == 0b0001.

HWCAP2_I8MM

    Functionality implied by ID_AA64ISAR1_EL1.I8MM == 0b0001.

HWCAP2_BF16

    Functionality implied by ID_AA64ISAR1_EL1.BF16 == 0b0001.

HWCAP2_DGH

    Functionality implied by ID_AA64ISAR1_EL1.DGH == 0b0001.

HWCAP2_RNG

    Functionality implied by ID_AA64ISAR0_EL1.RNDR == 0b0001.

HWCAP2_BTI

    Functionality implied by ID_AA64PFR0_EL1.BT == 0b0001.

HWCAP2_MTE

    Functionality implied by ID_AA64PFR1_EL1.MTE == 0b0010, as described
    by Documentation/arm64/memory-tagging-extension.rst.

4. Unused AT_HWCAP bits
-----------------------

For interoperation with userspace, the kernel guarantees that bits 62
and 63 of AT_HWCAP will always be returned as 0.