Based on kernel version 6.10
. Page generated on 2024-07-16 09:00 EST
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | .. SPDX-License-Identifier: GPL-2.0 ================================================= Using RCU hlist_nulls to protect list and objects ================================================= This section describes how to use hlist_nulls to protect read-mostly linked lists and objects using SLAB_TYPESAFE_BY_RCU allocations. Please read the basics in listRCU.rst. Using 'nulls' ============= Using special makers (called 'nulls') is a convenient way to solve following problem. Without 'nulls', a typical RCU linked list managing objects which are allocated with SLAB_TYPESAFE_BY_RCU kmem_cache can use the following algorithms. Following examples assume 'obj' is a pointer to such objects, which is having below type. :: struct object { struct hlist_node obj_node; atomic_t refcnt; unsigned int key; }; 1) Lookup algorithm ------------------- :: begin: rcu_read_lock(); obj = lockless_lookup(key); if (obj) { if (!try_get_ref(obj)) { // might fail for free objects rcu_read_unlock(); goto begin; } /* * Because a writer could delete object, and a writer could * reuse these object before the RCU grace period, we * must check key after getting the reference on object */ if (obj->key != key) { // not the object we expected put_ref(obj); rcu_read_unlock(); goto begin; } } rcu_read_unlock(); Beware that lockless_lookup(key) cannot use traditional hlist_for_each_entry_rcu() but a version with an additional memory barrier (smp_rmb()) :: lockless_lookup(key) { struct hlist_node *node, *next; for (pos = rcu_dereference((head)->first); pos && ({ next = pos->next; smp_rmb(); prefetch(next); 1; }) && ({ obj = hlist_entry(pos, typeof(*obj), obj_node); 1; }); pos = rcu_dereference(next)) if (obj->key == key) return obj; return NULL; } And note the traditional hlist_for_each_entry_rcu() misses this smp_rmb():: struct hlist_node *node; for (pos = rcu_dereference((head)->first); pos && ({ prefetch(pos->next); 1; }) && ({ obj = hlist_entry(pos, typeof(*obj), obj_node); 1; }); pos = rcu_dereference(pos->next)) if (obj->key == key) return obj; return NULL; Quoting Corey Minyard:: "If the object is moved from one list to another list in-between the time the hash is calculated and the next field is accessed, and the object has moved to the end of a new list, the traversal will not complete properly on the list it should have, since the object will be on the end of the new list and there's not a way to tell it's on a new list and restart the list traversal. I think that this can be solved by pre-fetching the "next" field (with proper barriers) before checking the key." 2) Insertion algorithm ---------------------- We need to make sure a reader cannot read the new 'obj->obj_node.next' value and previous value of 'obj->key'. Otherwise, an item could be deleted from a chain, and inserted into another chain. If new chain was empty before the move, 'next' pointer is NULL, and lockless reader can not detect the fact that it missed following items in original chain. :: /* * Please note that new inserts are done at the head of list, * not in the middle or end. */ obj = kmem_cache_alloc(...); lock_chain(); // typically a spin_lock() obj->key = key; atomic_set_release(&obj->refcnt, 1); // key before refcnt hlist_add_head_rcu(&obj->obj_node, list); unlock_chain(); // typically a spin_unlock() 3) Removal algorithm -------------------- Nothing special here, we can use a standard RCU hlist deletion. But thanks to SLAB_TYPESAFE_BY_RCU, beware a deleted object can be reused very very fast (before the end of RCU grace period) :: if (put_last_reference_on(obj) { lock_chain(); // typically a spin_lock() hlist_del_init_rcu(&obj->obj_node); unlock_chain(); // typically a spin_unlock() kmem_cache_free(cachep, obj); } -------------------------------------------------------------------------- Avoiding extra smp_rmb() ======================== With hlist_nulls we can avoid extra smp_rmb() in lockless_lookup(). For example, if we choose to store the slot number as the 'nulls' end-of-list marker for each slot of the hash table, we can detect a race (some writer did a delete and/or a move of an object to another chain) checking the final 'nulls' value if the lookup met the end of chain. If final 'nulls' value is not the slot number, then we must restart the lookup at the beginning. If the object was moved to the same chain, then the reader doesn't care: It might occasionally scan the list again without harm. Note that using hlist_nulls means the type of 'obj_node' field of 'struct object' becomes 'struct hlist_nulls_node'. 1) lookup algorithm ------------------- :: head = &table[slot]; begin: rcu_read_lock(); hlist_nulls_for_each_entry_rcu(obj, node, head, obj_node) { if (obj->key == key) { if (!try_get_ref(obj)) { // might fail for free objects rcu_read_unlock(); goto begin; } if (obj->key != key) { // not the object we expected put_ref(obj); rcu_read_unlock(); goto begin; } goto out; } } // If the nulls value we got at the end of this lookup is // not the expected one, we must restart lookup. // We probably met an item that was moved to another chain. if (get_nulls_value(node) != slot) { put_ref(obj); rcu_read_unlock(); goto begin; } obj = NULL; out: rcu_read_unlock(); 2) Insert algorithm ------------------- Same to the above one, but uses hlist_nulls_add_head_rcu() instead of hlist_add_head_rcu(). :: /* * Please note that new inserts are done at the head of list, * not in the middle or end. */ obj = kmem_cache_alloc(cachep); lock_chain(); // typically a spin_lock() obj->key = key; atomic_set_release(&obj->refcnt, 1); // key before refcnt /* * insert obj in RCU way (readers might be traversing chain) */ hlist_nulls_add_head_rcu(&obj->obj_node, list); unlock_chain(); // typically a spin_unlock() |